共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang C Huang M DeBiasio J Pring M Joyce M Miki H Takenawa T Zigmond SH 《The Journal of cell biology》2000,150(5):1001-1012
We find that profilin contributes in several ways to Cdc42-induced nucleation of actin filaments in high speed supernatant of lysed neutrophils. Depletion of profilin inhibited Cdc42-induced nucleation; re-addition of profilin restored much of the activity. Mutant profilins with a decreased affinity for either actin or poly-l-proline were less effective at restoring activity. Whereas Cdc42 must activate Wiskott-Aldrich Syndrome protein (WASP) to stimulate nucleation by the Arp2/3 complex, VCA (verpolin homology, cofilin, and acidic domain contained in the COOH-terminal fragment of N-WASP) constitutively activates the Arp2/3 complex. Nucleation by VCA was not inhibited by profilin depletion. With purified N-WASP and Arp2/3 complex, Cdc42-induced nucleation did not require profilin but was enhanced by profilin, wild-type profilin being more effective than mutant profilin with reduced affinity for poly-l-proline.Nucleation by the Arp2/3 complex is a function of the free G-actin concentration. Thus, when profilin addition decreased the free G-actin concentration, it inhibited Cdc42- and VCA-induced nucleation. However, when profilin was added with G-actin in a ratio that maintained the initial free G-actin concentration, it increased the rate of both Cdc42- and VCA-induced nucleation. This enhancement, also seen with purified proteins, was greatest when the free G-actin concentration was low. These data suggest that under conditions present in intact cells, profilin enhances nucleation by activated Arp2/3 complex. 相似文献
2.
Bubb MR Yarmola EG Gibson BG Southwick FS 《The Journal of biological chemistry》2003,278(27):24629-24635
Profilin interacts with the barbed ends of actin filaments and is thought to facilitate in vivo actin polymerization. This conclusion is based primarily on in vitro kinetic experiments using relatively low concentrations of profilin (1-5 microm). However, the cell contains actin regulatory proteins with multiple profilin binding sites that potentially can attract millimolar concentrations of profilin to areas requiring rapid actin filament turnover. We have studied the effects of higher concentrations of profilin (10-100 microm) on actin monomer kinetics at the barbed end. Prior work indicated that profilin might augment actin filament depolymerization in this range of profilin concentration. At barbed-end saturating concentrations (final concentration, approximately 40 microm), profilin accelerated the off-rate of actin monomers by a factor of four to six. Comparable concentrations of latrunculin had no detectable effect on the depolymerization rate, indicating that profilin-mediated acceleration was independent of monomer sequestration. Furthermore, we have found that high concentrations of profilin can successfully compete with CapG for the barbed end and uncap actin filaments, and a simple equilibrium model of competitive binding could explain these effects. In contrast, neither gelsolin nor CapZ could be dissociated from actin filaments under the same conditions. These differences in the ability of profilin to dissociate capping proteins may explain earlier in vivo data showing selective depolymerization of actin filaments after microinjection of profilin. The finding that profilin can uncap actin filaments was not previously appreciated, and this newly discovered function may have important implications for filament elongation as well as depolymerization. 相似文献
3.
M Kato H Miki K Imai S Nonoyama T Suzuki C Sasakawa T Takenawa 《The Journal of biological chemistry》1999,274(38):27225-27230
WASP (Wiskott-Aldrich syndrome protein) was identified as the gene product whose mutation causes the human hereditary disease Wiskott-Aldrich syndrome. WASP contains many functional domains and has been shown to induce the formation of clusters of actin filaments in a manner dependent on Cdc42. However, there has been no report investigating what domain(s) is(are) important for the function. Here we present for the first time the results of detailed analyses on the domain-function relationship of WASP. First, the C-terminal verprolin-cofilin-acidic domain was shown to be essential for the regulation of actin cytoskeleton. In addition, we found that the clustering of WASP itself is distinct from actin clustering. The partial protein containing the region from the N-terminal pleckstrin homology domain to the basic residue-rich region also clustered especially around the nucleus as wild type WASP without inducing actin clustering. Finally, we obtained the quite unexpected result that a WASP mutant deficient in binding to Cdc42 still induced actin cluster formation, indicating that direct interaction between Cdc42 and WASP is not required for the regulation of actin cytoskeleton. This result may explain why no Wiskott-Aldrich syndrome patients have been identified with a missense mutation in the Cdc42-binding site. 相似文献
4.
Hussain NK Jenna S Glogauer M Quinn CC Wasiak S Guipponi M Antonarakis SE Kay BK Stossel TP Lamarche-Vane N McPherson PS 《Nature cell biology》2001,3(10):927-932
Intersectin-s is a modular scaffolding protein regulating the formation of clathrin-coated vesicles. In addition to the Eps15 homology (EH) and Src homology 3 (SH3) domains of intersectin-s, the neuronal variant (intersectin-l) also has Dbl homology (DH), pleckstrin homology (PH) and C2 domains. We now show that intersectin-l functions through its DH domain as a guanine nucleotide exchange factor (GEF) for Cdc42. In cultured cells, expression of DH-domain-containing constructs cause actin rearrangements specific for Cdc42 activation. Moreover, in vivo studies reveal that stimulation of Cdc42 by intersectin-l accelerates actin assembly via N-WASP and the Arp2/3 complex. N-WASP binds directly to intersectin-l and upregulates its GEF activity, thereby generating GTP-bound Cdc42, a critical activator of N-WASP. These studies reveal a role for intersectin-l in a novel mechanism of N-WASP activation and in regulation of the actin cytoskeleton. 相似文献
5.
Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments 总被引:1,自引:0,他引:1 下载免费PDF全文
Gasman S Chasserot-Golaz S Malacombe M Way M Bader MF 《Molecular biology of the cell》2004,15(2):520-531
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient. 相似文献
6.
Equilibrium constant for binding of an actin filament capping protein to the barbed end of actin filaments 总被引:2,自引:0,他引:2
Depolymerization of treadmilling actin filaments by a capping protein isolated from bovine brain was used for determination of the equilibrium constant for binding of the capping protein to the barbed ends of actin filaments. When the capping protein blocks monomer consumption at the lengthening barbed ends, monomers continue to be produced at the shortening pointed ends until a new steady state is reached in which monomer production at the pointed ends is balanced by monomer consumption at the uncapped barbed ends. In this way the ratio of capped to uncapped filaments could be determined as a function of the capping protein concentration. Under the experimental conditions (100 mM KCl and 2 mM MgCl2, pH 7.5, 37 degrees C) the binding constant was found to be about 2 X 10(9) M-1. Capping proteins effect the actin monomer concentration only at capping protein concentrations far above the reciprocal of their binding constant. Half-maximal increase of the monomer concentration requires capping of about 99% of the actin filaments. A low proportion of uncapped filaments has a great weight in determining the monomer concentration because association and dissociation reactions occur at the dynamic barbed ends with higher frequencies than at the pointed ends. 相似文献
7.
Shumilina EV Negulyaev YA Morachevskaya EA Hinssen H Khaitlina SY 《Molecular biology of the cell》2003,14(4):1709-1716
Ion transport in various tissues can be regulated by the cortical actin cytoskeleton. Specifically, involvement of actin dynamics in the regulation of nonvoltage-gated sodium channels has been shown. Herein, inside-out patch clamp experiments were performed to study the effect of the heterodimeric actin capping protein CapZ on sodium channel regulation in leukemia K562 cells. The channels were activated by cytochalasin-induced disruption of actin filaments and inactivated by G-actin under ionic conditions promoting rapid actin polymerization. CapZ had no direct effect on channel activity. However, being added together with G-actin, CapZ prevented actin-induced channel inactivation, and this effect occurred at CapZ/actin molar ratios from 1:5 to 1:100. When actin was allowed to polymerize at the plasma membrane to induce partial channel inactivation, subsequent addition of CapZ restored the channel activity. These results can be explained by CapZ-induced inhibition of further assembly of actin filaments at the plasma membrane due to the modification of actin dynamics by CapZ. No effect on the channel activity was observed in response to F-actin, confirming that the mechanism of channel inactivation does not involve interaction of the channel with preformed filaments. Our data show that actin-capping protein can participate in the cytoskeleton-associated regulation of sodium transport in nonexcitable cells. 相似文献
8.
Yang C Pring M Wear MA Huang M Cooper JA Svitkina TM Zigmond SH 《Developmental cell》2005,9(2):209-221
Actin polymerization in cells occurs via filament elongation at the barbed end. Proteins that cap the barbed end terminate this elongation. Heterodimeric capping protein (CP) is an abundant and ubiquitous protein that caps the barbed end. We find that the mouse homolog of the adaptor protein CARMIL (mCARMIL) binds CP with high affinity and decreases its affinity for the barbed end. Addition of mCARMIL to cell extracts increases the rate and extent of Arp2/3 or spectrin-actin seed-induced polymerization. In cells, GFP-mCARMIL concentrates in lamellipodia and increases the fraction of cells with large lamellipodia. Decreasing mCARMIL levels by siRNA transfection lowers the F-actin level and slows cell migration through a mechanism that includes decreased lamellipodia protrusion. This phenotype is reversed by full-length mCARMIL but not mCARMIL lacking the domain that binds CP. Thus, mCARMIL is a key regulator of CP and has profound effects on cell behavior. 相似文献
9.
Izumi G Sakisaka T Baba T Tanaka S Morimoto K Takai Y 《The Journal of cell biology》2004,166(2):237-248
E-cadherin is a key cell-cell adhesion molecule at adherens junctions (AJs) and undergoes endocytosis when AJs are disrupted by the action of extracellular signals. To elucidate the mechanism of this endocytosis, we developed here a new cell-free assay system for this reaction using the AJ-enriched fraction from rat liver. We found here that non-trans-interacting, but not trans-interacting, E-cadherin underwent endocytosis in a clathrin-dependent manner. The endocytosis of trans-interacting E-cadherin was inhibited by Rac and Cdc42 small G proteins, which were activated by trans-interacting E-cadherin or trans-interacting nectins, which are known to induce the formation of AJs in cooperation with E-cadherin. This inhibition was mediated by reorganization of the actin cytoskeleton by Rac and Cdc42 through IQGAP1, an actin filament-binding protein and a downstream target of Rac and Cdc42. These results indicate the important role of the Rac/Cdc42-IQGAP1 system in the dynamic organization and maintenance of the E-cadherin-based AJs. 相似文献
10.
Cortical actin patches are the most prominent actin structure in budding and fission yeast. Patches assemble, move, and disassemble rapidly. We investigated the mechanisms underlying patch actin assembly and motility by studying actin filament ultrastructure within a patch. Actin patches were partially purified from Saccharomyces cerevisiae and examined by negative-stain electron microscopy (EM). To identify patches in the EM, we correlated fluorescence and EM images of GFP-labeled patches. Patches contained a network of actin filaments with branches characteristic of Arp2/3 complex. An average patch contained 85 filaments. The average filament was only 50-nm (20 actin subunits) long, and the filament to branch ratio was 3:1. Patches lacking Sac6/fimbrin were unstable, and patches lacking capping protein were relatively normal. Our results are consistent with Arp2/3 complex-mediated actin polymerization driving yeast actin patch assembly and motility, as described by a variation of the dendritic nucleation model. 相似文献
11.
In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399-416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization site in unbudded cells. We provide evidence that dispersal is due to endocytosis associated with cortical actin patches and that actin cables are required to counteract the dispersal and maintain Cdc42p polarity. Thus, although Cdc42p is initially polarized in an actin-independent manner, maintaining that polarity may involve a reinforcing feedback between Cdc42p and polarized actin cables to counteract the dispersing effects of actin-dependent endocytosis. In addition, we report that once a bud has formed, polarized Cdc42p becomes more resistant to dispersal, revealing an unexpected difference between unbudded and budded cells in the organization of the polarization site. 相似文献
12.
Chung YH Yoon SY Choi B Sohn DH Yoon KH Kim WJ Kim DH Chang EJ 《The international journal of biochemistry & cell biology》2012,44(6):989-997
Microtubule-associated protein 1 light chain-3 (LC3) plays a critical role in autophagosome formation during autophagy; however, its potential alternative functions remain largely unexplored. Here we demonstrate a discrete role for LC3 in osteoclast, a specialized bone-resorbing cell that requires a dynamic microtubule network for its activity. We found that an increase in the conversion of soluble LC3-I to lipid-bound LC3-II in mature osteoclast was correlated with osteoclast activity, but not with autophagic activity. Knockdown of LC3 using small interfering RNA did not affect TRAP-positive multinucleated cell formation, but suppressed actin ring formation, cathepsin K release, and the subsequent bone-resorbing capacity of osteoclasts. LC3 mediated this function by associating with microtubules and regulating Cdc42 activity. More importantly, LC3-II protein levels were reduced by the Atg5 knockdown, and this knockdown led to decrease in Cdc42 activity, indicating that LC3-II is critical for Cdc42 activity. Overexpression of a constitutively active form of Cdc42 partially rescued the phenotype induced by LC3 knockdown. Our results demonstrate that LC3 contributes to the regulatory link between the microtubule and Cdc42 involved in bone-resorbing activity, providing evidence for a role for LC3 in mediating diverse cellular functions beyond its role as an autophagy protein. 相似文献
13.
Actin filaments in yeast are unstable in the absence of capping protein or fimbrin 总被引:8,自引:2,他引:6 下载免费PDF全文
《The Journal of cell biology》1995,131(6):1483-1493
Many actin-binding proteins affect filament assembly in vitro and localize with actin in vivo, but how their molecular actions contribute to filament assembly in vivo is not understood well. We report here that capping protein (CP) and fimbrin are both important for actin filament assembly in vivo in Saccharomyces cerevisiae, based on finding decreased actin filament assembly in CP and fimbrin mutants. We have also identified mutations in actin that enhance the CP phenotype and find that those mutants also have decreased actin filament assembly in vivo. In vitro, actin purified from some of these mutants is defective in polymerization or binding fimbrin. These findings support the conclusion that CP acts to stabilize actin filaments in vivo. This conclusion is particularly remarkable because it is the opposite of the conclusion drawn from recent studies in Dictyostelium (Hug, C., P.Y. Jay, I. Reddy, J.G. McNally, P.C. Bridgman, E.L. Elson, and J.A. Cooper. 1995. Cell. 81:591-600). In addition, we find that the unpolymerized pool of actin in yeast is very small relative to that found in higher cells, which suggests that actin filament assembly is less dynamic in yeast than higher cells. 相似文献
14.
Sally H. Zigmond Michael Joyce Changsong Yang Kevin Brown Minzhou Huang Martin Pring 《The Journal of cell biology》1998,142(4):1001-1012
Cdc42, activated with GTPγS, induces actin polymerization in supernatants of lysed neutrophils. This polymerization, like that induced by agonists, requires elongation at filament barbed ends. To determine if creation of free barbed ends was sufficient to induce actin polymerization, free barbed ends in the form of spectrin-actin seeds or sheared F-actin filaments were added to cell supernatants. Neither induced polymerization. Furthermore, the presence of spectrin-actin seeds did not increase the rate of Cdc42-induced polymerization, suggesting that the presence of Cdc42 did not facilitate polymerization from spectrin-actin seeds such as might have been the case if Cdc42 inhibited capping or released G-actin from a sequestered pool.Electron microscopy revealed that Cdc42-induced filaments elongated rapidly, achieving a mean length greater than 1 μm in 15 s. The mean length of filaments formed from spectrin-actin seeds was <0.4 μm. Had spectrin-actin seeds elongated at comparable rates before they were capped, they would have induced longer filaments. There was little change in mean length of Cdc42-induced filaments between 15 s and 5 min, suggesting that the increase in F-actin over this time was due to an increase in filament number. These data suggest that Cdc42 induction of actin polymerization requires both creation of free barbed ends and facilitated elongation at these ends. 相似文献
15.
Acanthamoeba CARMIL was previously shown to co-purify with capping protein (CP) and to bind pure CP. Here we show that this interaction inhibits the barbed end-capping activity of CP. Even more strikingly, this interaction drives the uncapping of actin filaments previously capped with CP. These activities are CP-specific; CARMIL does not inhibit the capping activities of either gelsolin or CapG and does not uncap gelsolin-capped filaments. Although full-length (FL) CARMIL (residues 1-1121) possesses both anti-CP activities, C-terminal fragments like glutathione S-transferase (GST)-P (940-1121) that contain the CARMIL CP binding site are at least 10 times more active. We localized the full activities of GST-P to its C-terminal 51 residues (1071-1121). This sequence contains a stretch of 25 residues that is highly conserved in CARMIL proteins from protozoa, flies, worms, and vertebrates (CARMIL Homology domain 3; CAH3). Point mutations showed that the majority of the most highly conserved residues within CAH3 are critical for the anti-CP activity of GST-AP (862-1121). Finally, we found that GST-AP binds CP approximately 20-fold more tightly than does FL-CARMIL. This observation together with the elevated activities of C-terminal fragments relative to FL-CARMIL suggests that FL-CARMIL might exist primarily in an autoinhibited state. Consistent with this idea, proteolytic cleavage of FL-CARMIL with thrombin generated an approximately 14-kDa C-terminal fragment that expresses full anti-CP activities. We propose that, after some type of physiological activation event, FL-CARMIL could function in vivo as a potent CP antagonist. Given the pivotal role that CP plays in determining the global actin phenotype of cells, our results suggest that CARMIL may play an important role in the physiological regulation of actin assembly. 相似文献
16.
Hydrogen peroxide formation and actin filament reorganization by Cdc42 are essential for ethanol-induced in vitro angiogenesis 总被引:3,自引:0,他引:3
Qian Y Luo J Leonard SS Harris GK Millecchia L Flynn DC Shi X 《The Journal of biological chemistry》2003,278(18):16189-16197
This report focuses on the identification of the molecular mechanisms of ethanol-induced in vitro angiogenesis. The manipulation of angiogenesis is an important therapeutic approach for the treatment of cancer, cardiovascular diseases, and chronic inflammation. Our results showed that ethanol stimulation altered the integrity of actin filaments and increased the formation of lamellipodia and filopodia in SVEC4-10 cells. Further experiments demonstrated that ethanol stimulation increased cell migration and invasion and induced in vitro angiogenesis in SVEC4-10 cells. Mechanistically, ethanol stimulation activated Cdc42 and produced H(2)O(2) a reactive oxygen species intermediate in SVEC4-10 cells. Measuring the time course of Cdc42 activation and H(2)O(2) production upon ethanol stimulation revealed that the Cdc42 activation and the increase of H(2)O(2) lasted more than 3 h, which indicates the mechanisms of the long duration effects of ethanol on the cells. Furthermore, either overexpression of a constitutive dominant negative Cdc42 or inhibition of H(2)O(2) production abrogated the effects of ethanol on SVEC4-10 cells, indicating that both the activation of Cdc42 and the production of H(2)O(2) are essential for the actions of ethanol. Interestingly, we also found that overexpression of a constitutive dominant positive Cdc42 itself was sufficient to produce H(2)O(2) and to induce in vitro angiogenesis. Taken together, our results suggest that ethanol stimulation can induce H(2)O(2) production through the activation of Cdc42, which results in reorganizing actin filaments and increasing cell motility and in vitro angiogenesis. 相似文献
17.
Actin filaments, F-actin, a major component of the cortical cytoskeleton, play an important role in a variety of cell functions. In this report we have assessed the role of osmotic stress on the electrochemical properties of F-actin. The spontaneous Donnan potential of a polymerized actin solution (5 mg/ml) was -3.93 +/- 1.84 mV, which was linearly reduced by osmotic stress on the order of 1-20 mOsm (0.28 +/- 0.06 mV/mM). Calculated surface charge density was reduced and eventually reversed by increasing the osmotic stress as expected for a phase transition behavior. The electro-osmotic behavior of F-actin disappeared at pH 5.5 and was dependent on its filamentous nature. Furthermore, osmotically stressed F-actin displayed a nonlinear electric response upon application of electric fields on the order of 500-2,000 V/cm. These data indicate that F-actin in solution may display nonideal electro-osmotic properties consistent with ionic "cable" behavior which may be of biological significance in the processing and conduction of electrical signals within the cellular compartment. 相似文献
18.
Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration 总被引:11,自引:0,他引:11
Watanabe T Wang S Noritake J Sato K Fukata M Takefuji M Nakagawa M Izumi N Akiyama T Kaibuchi K 《Developmental cell》2004,7(6):871-883
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration. 相似文献
19.
Disanza A Carlier MF Stradal TE Didry D Frittoli E Confalonieri S Croce A Wehland J Di Fiore PP Scita G 《Nature cell biology》2004,6(12):1180-1188
Actin filament barbed-end capping proteins are essential for cell motility, as they regulate the growth of actin filaments to generate propulsive force. One family of capping proteins, whose prototype is gelsolin, shares modular architecture, mechanism of action, and regulation through signalling-dependent mechanisms, such as Ca(2+) or phosphatidylinositol-4,5-phosphate binding. Here we show that proteins of another family, the Eps8 family, also show barbed-end capping activity, which resides in their conserved carboxy-terminal effector domain. The isolated effector domain of Eps8 caps barbed ends with an affinity in the nanomolar range. Conversely, full-length Eps8 is auto-inhibited in vitro, and interaction with the Abi1 protein relieves this inhibition. In vivo, Eps8 is recruited to actin dynamic sites, and its removal impairs actin-based propulsion. Eps8-family proteins do not show any similarity to gelsolin-like proteins. Thus, our results identify a new family of actin cappers, and unveil novel modalities of regulation of capping through protein-protein interactions. One established function of the Eps8-Abi1 complex is to participate in the activation of the small GTPase Rac, suggesting a multifaceted role for this complex in actin dynamics, possibly through the participation in alternative larger complexes. 相似文献
20.
The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin 总被引:15,自引:0,他引:15
Cytokinesis in most eukaryotes requires the assembly and contraction of a ring of actin filaments and myosin II. The fission yeast Schizosaccharomyces pombe requires the formin Cdc12p and profilin (Cdc3p) early in the assembly of the contractile ring. The proline-rich formin homology (FH) 1 domain binds profilin, and the FH2 domain binds actin. Expression of a construct consisting of the Cdc12 FH1 and FH2 domains complements a conditional mutant of Cdc12 at the restrictive temperature, but arrests cells at the permissive temperature. Cells overexpressing Cdc12(FH1FH2)p stop growing with excessive actin cables but no contractile rings. Like capping protein, purified Cdc12(FH1FH2)p caps the barbed end of actin filaments, preventing subunit addition and dissociation, inhibits end to end annealing of filaments, and nucleates filaments that grow exclusively from their pointed ends. The maximum yield is one filament pointed end per six formin polypeptides. Profilins that bind both actin and poly-l-proline inhibit nucleation by Cdc12(FH1FH2)p, but polymerization of monomeric actin is faster, because the filaments grow from their barbed ends at the same rate as uncapped filaments. On the other hand, Cdc12(FH1FH2)p blocks annealing even in the presence of profilin. Thus, formins are profilin-gated barbed end capping proteins with the ability to initiate actin filaments from actin monomers bound to profilin. These properties explain why contractile ring assembly requires both formin and profilin and why viability depends on the ability of profilin to bind both actin and poly-l-proline. 相似文献