首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated, from canine pancreatic juice, two 14-kDa proteins with secretin-releasing activity that had N-terminal sequence homology with canine pancreatic phospholipase A2 (PLA2). In this study we have obtained evidence that secretin-releasing activity is an intrinsic property of pancreatic PLA2. Porcine pancreatic PLA2 from Sigma or Boehringer Mannheim was fractionated into several peaks by reverse phase high performance liquid chromatography. They were tested for stimulation of secretin release from murine neuroendocrine intestinal tumor cell line STC-1 and secretin cells enriched mucosal cell preparations isolated from rat upper small intestine. Each enzyme preparation was found to contain several components of secretin-releasing activity. Each bioactive fraction was purified to homogeneity by rechromatography and then subjected to mass spectral analysis and assays of PLA2 and secretin-releasing activities. It was found that the fraction with highest enzymatic activity also had the highest secretin-releasing activity and the same Mr as porcine pancreatic PLA2. Moreover, it also had the same N-terminal amino acid sequence (up to 30 residues determined) as that of porcine pancreatic PLA2, suggesting that it was identical to the enzyme. Purified porcine pancreatic PLA2 also stimulated secretin release concentration-dependently from both STC-1 cells and a mucosal cell preparation enriched in secretin-containing endocrine cells isolated from rat duodenum. Abolishment of the enzymatic activity by pretreatment with bromophenacyl bromide did not affect its secretin-releasing activity. The stimulatory effect of purified pancreatic PLA2 on secretin secretion from STC-1 cells was inhibited by an L-type Ca2+ channel blocker, by down-regulation of protein kinase C or by pretreatment of the cell with pertussis toxin. It is concluded that porcine pancreatic PLA2 possesses an intrinsic secretin-releasing activity that was independent of its enzymatic activity. This action is pertussis toxin-sensitive and is in part dependent on Ca2+ influx through the L-type channel and activation of protein kinase C.  相似文献   

2.
The competitive inhibition of human pancreatic and a mutant human platelet phospholipase A2 (PLA2) was investigated using acylamino phospholipid analogues, which are potent competitive inhibitors of porcine pancreatic PLA2 [De Haas et al. (1990) Biochim. Biophys. Acta 1046, 249-257]. Both the mutant platelet PLA2 and the human pancreatic PLA2 are effectively inhibited by these compounds. The enzyme from platelets is most strongly inhibited by compounds with a negatively charged phosphoglycol headgroup. Compounds with a neutral phosphocholine headgroup are only weak inhibitors, whereas an inhibitor with a phosphoethanolamine headgroup shows an intermediate inhibitory capacity. The platelet PLA2 is most effectively inhibited by negatively charged inhibitors having a relatively short (four or more carbon atoms) alkylchain on position one and a acylamino chain of 14 carbon atoms on position two. For the pancreatic enzyme an inhibitor with a phosphoethanolamine headgroup was more effective than inhibitors with either a phosphocholine or a phosphoglycol headgroup. The chainlength preference of the pancreatic enzyme resembles that of the platelet PLA2. The largest discrimination in inhibition between the human platelet and the human pancreatic PLA2 is obtained with inhibitors with a negatively charged phosphoglycol headgroup, an alkyl chain of four carbon atoms on position one and a long acylamino chain of 14-16 carbon atoms on position two. Because the platelet PLA2 is thought to have several biological functions, specific inhibitors of this enzyme could have important implications in the design of pharmaceutically interesting compounds.  相似文献   

3.
Cheng J  Saigo H  Baldi P 《Proteins》2006,62(3):617-629
The formation of disulphide bridges between cysteines plays an important role in protein folding, structure, function, and evolution. Here, we develop new methods for predicting disulphide bridges in proteins. We first build a large curated data set of proteins containing disulphide bridges to extract relevant statistics. We then use kernel methods to predict whether a given protein chain contains intrachain disulphide bridges or not, and recursive neural networks to predict the bonding probabilities of each pair of cysteines in the chain. These probabilities in turn lead to an accurate estimation of the total number of disulphide bridges and to a weighted graph matching problem that can be addressed efficiently to infer the global disulphide bridge connectivity pattern. This approach can be applied both in situations where the bonded state of each cysteine is known, or in ab initio mode where the state is unknown. Furthermore, it can easily cope with chains containing an arbitrary number of disulphide bridges, overcoming one of the major limitations of previous approaches. It can classify individual cysteine residues as bonded or nonbonded with 87% specificity and 89% sensitivity. The estimate for the total number of bridges in each chain is correct 71% of the times, and within one from the true value over 94% of the times. The prediction of the overall disulphide connectivity pattern is exact in about 51% of the chains. In addition to using profiles in the input to leverage evolutionary information, including true (but not predicted) secondary structure and solvent accessibility information yields small but noticeable improvements. Finally, once the system is trained, predictions can be computed rapidly on a proteomic or protein-engineering scale. The disulphide bridge prediction server (DIpro), software, and datasets are available through www.igb.uci.edu/servers/psss.html.  相似文献   

4.
Interchain disulphide bridges of mouse immunoglobulin M.   总被引:4,自引:1,他引:3       下载免费PDF全文
Mouse IgM (immunoglobulin M) was selectively and partially reduced and treated with iodo[2-14C]acetate to label the interchain disulphide bridges. The carboxymethylation was studied in some detail. The labelled peptides were purified, sequenced and positioned by homology with human IgM. Only peptides originating from three interchain disulphide bridges were labelled, in contrast with the four labelled bridges obtained in human IgM under the same conditions. These peptides are homologous to human bridge peptides forming the heavy-light bridge and two inter-heavy bridges, one present in the CMU2 region and the other in the C-terminal region. The inter-heavy bridge in the Cmu2 region was alone cleaved and radioactively labelled in selectively reduced IgM held together as a pentamer by non-covalen interactions. The same bridge was the only one to be totally cleaved in subunits released after more extensive, though still selective, reduction. In the light of these results a possible arrangement of the disulphide bridges of the mouse IgM.  相似文献   

5.
1. The amino acid sequences around three disulphide bridges and four methionine residues of porcine pepsin were studied by using diagonal electrophoresis methods. 2. Two of the three disulphide bridges were in small loops of five and six residues. The sequence around one of the two half-cystine residues of the third disulphide bridge had a large number of acidic residues. 3. The sequence of a tetrapeptide containing phosphoserine was also determined. 4. Four unique methionine-containing sequences were constructed. The information is sufficient for the determination of the overlaps in the cyanogen bromide fragments of pepsin. 5. The usefulness of diagonal methods in the study of protein structure, the relative positions of cystinyl and methionyl residues in porcine pepsin and the homology between pepsin and rennin are discussed.  相似文献   

6.
W Yuan  D M Quinn  P B Sigler  M H Gelb 《Biochemistry》1990,29(25):6082-6094
The action of the phospholipases A2 (PLA2s) from Naja naja naja, Naja naja atra, and Crotalus atrox venoms as well as the enzyme from porcine pancreas on a number of short-chain, water-soluble substrates was studied. The inhibition of these enzymes by short-chain phosphonate- and thiophosphonate-containing phospholipid analogues was also examined. The kinetic patterns observed for the action of the venom PLA2s on substrates containing phosphocholine head groups all deviated from a classical Michaelis-Menten-type behavior. With a substrate containing an anionic head group, the kinetic pattern observed was more normal. In contrast, Michaelis-Menten-type behavior was observed for the action of the porcine pancreatic PLA2 acting on all of the substrates studied. A short-chain phospholipid analogue in which the enzyme-susceptible ester was replaced with a phosphonate group was found to be a tight-binding inhibitor of the venom PLA2s with IC50 values that were some 10(4)-10(5)-fold lower than the concentration of substrate used in the assay. The degree of inhibition was found to depend dramatically on the stereochemical arrangement of substituents in the inhibitor which strongly suggests that the inhibitors are binding directly to the active site of the PLA2s. By comparison, the phosphonate analogue functioned as a poor inhibitor of the porcine pancreatic PLA2. Direct inhibitor binding studies indicated that the short-chain phosphonate inhibitor bound weakly to the venom enzymes in the absence of the short-chain substrates. Several other unusual features of the inhibition were also observed. The data are interpreted in terms of a model in which the enzyme and substrate form a lipid-protein aggregate at substrate concentrations below the critical micelle concentration (cmc). Possible reasons for the selective binding of the inhibitor to the enzyme-substrate microaggregate are discussed.  相似文献   

7.
The lipolytic enzyme phospholipase A2 (PLA2) is involved in the degradation of high-molecular weight phospholipid aggregates in vivo. The enzyme has very high catalytic activities on aggregated substrates compared with monomeric substrates, a phenomenon called interfacial activation. Crystal structures of PLA2s in the absence and presence of inhibitors are identical, from which it has been concluded that enzymatic conformational changes do not play a role in the mechanism of interfacial activation. The high-resolution NMR structure of porcine pancreatic PLA2 free in solution was determined with heteronuclear multidimensional NMR methodology using doubly labeled 13C, 15N-labeled protein. The solution structure of PLA2 shows important deviations from the crystal structure. In the NMR structure the Ala1 alpha-amino group is disordered and the hydrogen bonding network involving the N-terminus and the active site is incomplete. The disorder observed for the N-terminal region of PLA2 in the solution structure could be related to the low activity of the enzyme towards monomeric substrates. The NMR structure of PLA2 suggests, in contrast to the crystallographic work, that conformational changes do play a role in the interfacial activation of this enzyme.  相似文献   

8.
The cDNA coding for porcine pancreatic prophospholipase A2 (proPLA) has been cloned and expressed in Saccharomyces cerevisiae. Expression and secretion of proPLA could only be obtained after fusing the proPLA to the prepro sequence of the yeast alpha-mating factor. Upon secretion, the fusion protein was cleaved by the KEX2 protease yielding a 140-amino-acid zymogen-like form of the phospholipase A2. This protein was purified in high yield by ion-exchange chromatography. Limited proteolysis with trypsin cleaved the 'zymogen' to yield active phospholipase A2, which was indistinguishable from the authentic porcine pancreatic enzyme. These results show that a protein with a disulphide bridge content as high as 7 per 124 amino acid residues can be correctly processed by the yeast secretory apparatus.  相似文献   

9.
Tyr52 and Tyr73 are conserved amino acid residues throughout all vertebrate phospholipases A2. They are part of an extended hydrogen bonding system that links the N-terminal alpha-NH3(+)-group to the catalytic residues His48 and Asp99. These tyrosines were replaced by phenylalanines in a porcine pancreatic phospholipase A2 mutant, in which residues 62-66 had been deleted (delta 62-66PLA2). The mutations did not affect the catalytic properties of the enzyme, nor the folding kinetics. The stability against denaturation by guanidine hydrochloride was decreased, however. To analyse how the enzyme compensates for the loss of the tyrosine hydroxyl group, the X-ray structures of the delta Y52F and delta Y73F mutants were determined. After crystallographic refinement the final crystallographic R-factors were 18.1% for the delta Y52F mutant (data between 7 and 2.3 A resolution) and 19.1% for the delta Y73F mutant (data between 7 and 2.4 A resolution). No conformational changes occurred in the mutants compared with the delta 62-66PLA2, but an empty cavity formed at the site of the hydroxyl group of the former tyrosine. In both mutants the Asp99 side chain loses one of its hydrogen bonds and this might explain the observed destabilization.  相似文献   

10.
In order to probe the role of Asp-49 in the active site of porcine pancreatic phospholipase A2 two mutant proteins were constructed containing either Glu or Lys at position 49. Their enzymatic activities and their affinities for substrate and for Ca2+ ions were examined in comparison with the native enzyme. Enzymatic characterization indicated that the presence of Asp-49 is essential for effective hydrolysis of phospholipids. Conversion of Asp-49 to either Glu or Lys strongly reduces the binding of Ca2+ ions in particular for the lysine mutant but the affinity for substrate analogues is hardly affected. Extensive purification of [Lys49]phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus yielded a protein which was 4000 times less active than the basic [Asp49]phospholipase A2 from this venom. Inhibition studies with p-bromophenacyl bromide showed that this residual activity was due to a small amount of contaminating enzyme and that the Lys-49 homologue itself is inactive. The results obtained both with the porcine pancreatic phospholipase A2 mutants and with the native venom enzymes show that Asp-49 is essential for the catalytic action of phospholipase A2.  相似文献   

11.
The structural and functional roles of the two disulfide bridges in interleukin-8 (IL-8) were addressed using IL-8 analogues with covalently modified disulfide bridges. The analogues were prepared using chemical synthesis by replacement of a cysteine for either homocysteine, penicillamine, or selenocysteine and on folding resulted in a covalently modified disulfide. Deletion of either of the two disulfide bridges by replacement of either cysteine pair with alanine resulted in loss of both structure and function. In contrast, all of the analogues with modified disulfide bridges had native tertiary fold as determined by nuclear magnetic resonance spectroscopic methods. Their structural similarity provided a rational basis for assessing the functional effects of the changes to the disulfide. Modification to the disulfide bridge between cysteines 9 and 50 had only a modest effect on IL-8 function. In contrast, alterations to the 7-34 disulfide bridge resulted in a dramatic reduction in biological potency. Thus, although both disulfide bridges are required for maintenance of the native tertiary fold, their role in determining IL-8 activity is distinct. We propose that 7-34 disulfide has a direct role in determining receptor binding and activation, whereas the 9-50 was not directly involved. The synthesis of non-natural disulfide analogues is a novel general approach to structure-activity relationships of disulfide bridges. The demonstration that the participation of disulfide bridges in function can be dissociated from their effects on the stability of the tertiary structure suggests that this method will lead to increased understanding of the roles of disulfide bridges in proteins.  相似文献   

12.
For the first time, we have shown that a stereospecific interaction occurs between porcine pancreatic phospholipase A2 and a monomolecular film of amidophospholipid used as inhibitor. Direct binding experiments, using radiolabelled phospholipase A2, showed that 13 times more enzyme was bound to phospholipid films of the L series by comparison with films of the D series. These results were confirmed by indirect binding studies using re-spreading experiments. Kinetic studies of the porcine pancreatic PLA2, using enantiomeric acyl-amino phospholipid analogues, have shown that: (1) inhibitors of the L series are more potent than inhibitors of the D series, (2) inhibitors having a negative charge are more potent than zwitterionic inhibitors, (3) inhibitory power values are greater when evaluated in micellar system than in a the monolayer system, (4) the inhibitory power increases continuously with surface pressure.  相似文献   

13.
A new low-molecular-mass (6767.8 Da) serine proteinase isoinhibitor has been isolated from oil-rape (Brassica napus var. oleifera) seed, designated 5-oxoPro1-Gly62-RTI-III. The 5-oxoPro1-Gly62-RTI-III isoinhibitor is longer than the Asp2-Pro61-RTI-III and the Ser3-Pro61-RTI-III forms, all the other amino acid residues being identical. In RTI-III isoinhibitors, the P1-P1' reactive site bond (where residues forming the reactive site have been identified as PnellipsisP1 and P1'ellipsisPn', where P1-P1' is the inhibitor scissile bond) has been identified at position Arg21-Ile22. The inhibitor disulphide bridges pattern has been determined as Cys5-Cys27, Cys18-Cys31, Cys42-Cys52 and Cys54-Cys57. The disulphide bridge arrangement observed in the RTI-III isoinhibitors is reminiscent of that found in a number of toxins (e.g. erabutoxin b). Moreover, the organization of the three disulphide bridges subset Cys5-Cys27, Cys18-Cys31 and Cys42-Cys52 is reminiscent of that found in epidermal growth factor domains. Preliminary 1H-NMR data indicates the presence of alphaalphaNOEs and 3JalphaNH coupling constants, typical of the beta-structure(s). These data suggest that the three-dimensional structure of the RTI-III isoinhibitors may be reminiscent of that of toxins and epidermal growth factor domains, consisting of three-finger shaped loops extending from the crossover region. Values of the apparent association equilibrium constant for RTI-III isoinhibitors binding to bovine beta-trypsin and bovine alpha-chymotrypsin are 3.3 x 109 m-1 and 2.4 x 106 m-1, respectively, at pH 8.0 and 21.0 degrees C. The serine proteinase : inhibitor complex formation is a pH-dependent entropy-driven process. RTI-III isoinhibitors do not show any similarity to other serine proteinase inhibitors except the low molecular mass white mustard trypsin isoinhibitor, isolated from Sinapis alba L. seed (MTI-2). Therefore, RTI-III and MTI-2 isoinhibitors could be members of a new class of plant serine proteinase inhibitors.  相似文献   

14.
The crystal structure of the phospholipase A2 (PLA2) heterodimer from Naja naja sagittifera reveals the presence of a new PLA2-like protein with eight disulphide bridges. The heterodimer is formed between a commonly observed group I PLA2 having seven characteristic disulfide bonds and a novel PLA2-like protein (Cys-PLA2) containing two extra cysteines at two highly conserved sites (positions 32 and 49) of structural and functional importance. The crystals of the heterodimer belong to tetragonal space group P41212 with cell dimensions, a = b = 77.7 A and c = 68.4 A corresponding to a solvent content of 33%, which is one of the lowest values observed so far in the PLA2 crystals. The structure has been solved with molecular replacement method and refined to a final R value of 21.6% [Rfree = 25.6%]. The electron density revealed the presence of cysteines 32 and 49 that are covalently linked to give rise to an eighth disulphide bridge in the PLA2-like monomer. A non-protein high-quality electron density was also observed at the substrate-binding site in the PLA2-like protein that has been interpreted as N-acetylglucosamine. The overall tertiary folds of the two monomers are similar having all features of PLA2-type folding. A zinc ion is detected at the interface of the heterodimer with fivefold coordination while another zinc ion was found on the surface of Cys-PLA2 with sixfold coordination. The conformations of the calcium-binding loops of both monomers are significantly different from each other as well as from those in other group I PLA2s. The N-acetylglucosamine molecule is favorably placed in the substrate-binding site of Cys-PLA2 and forms five hydrogen bonds and several van der Waals interactions with protein atoms, thus indicating a strong affinity. It also provides clue of the possible mechanism of sugar recognition by PLA2 and PLA2-like proteins. The formation of heterodimer seems to have been induced by zinc ion.  相似文献   

15.
Fourier transform infrared spectroscopy has been used to investigate the secondary structure of porcine and bovine pancreatic phospholipase A2 (PLA2) and the zymogen of porcine PLA2, prophospholipase A2 (proPLA2), in both H2O and D2O media. Detailed qualitative analysis was made of these proteins using second derivative and deconvolution techniques. Quantitative studies of the proteins in solution made using Factor Analysis gave average values of 54% alpha-helix, 15% beta-sheet and 23% beta-turns. These values agree well with the secondary structures deduced from previous studies of single crystals using X-ray techniques. No significant differences in secondary structure were observed for porcine pancreatic (pro)phospholipase A2 in the presence or absence of Ca2+ ions, or in the temperature range 10-45 degrees C. The binding of the non-degradable phospholipid analogue, n-alkylphosphocholine, in monomeric form produced no significant difference in the secondary structure of either enzyme. Conformational differences were, however, observed between the enzyme lyophilised in a solid film and in aqueous solution. The change is probably due to the formation of beta-sheet upon hydration, coupled with a loss of random structures. Conformational differences in both porcine and bovine pancreatic PLA2 were observed on binding to n-alkylphosphocholine micelles. This change may be due to a small increase in the alpha-helical structure and a decrease in the beta-sheet, and/or possibly beta-turn content. Similar conformational changes were observed for the interaction of porcine and bovine PLA2 with the substrate analogue inhibitor 1-heptanoyl-2-heptanoylamino-2-deoxy-sn-glycero-3-phospho glycol in micellar form.  相似文献   

16.
The experimental basis of the pathway of refolding of reduced bovine pancreatic trypsin inhibitor that accompanies disulphide bond formation is explained in the light of a recent suggestion that the inability of certain Cys residues to form disulphide bonds could be explained simply by their thiol groups being inaccessible to disulphide reagents. This explanation is not valid, because part of the experimental evidence for inability to form disulphides is that the Cys residues accumulate as mixed-disulphides with the reagent. That these thiol groups are observed to react normally with the reagent, and with iodoacetic acid, is direct positive proof that they were not inaccessible or otherwise unreactive. The experimentally determined refolding pathway accurately reflects the energetics of the protein folding transitions and is consistent with all general observations of the folding transitions of other small proteins, whether or not disulphide bond formation is involved.  相似文献   

17.
The possibility that any non-random conformation in reduced bovine pancreatic trypsin inhibitor (BPTI) and ribonuclease A might be significant for folding has been considered, using the experimental data available on forming the first disulphide bond in each. It is a thermodynamic necessity that whatever conformation stabilises a particular disulphide bond be stabilised to the same extent by the presence of the disulphide. The stabilising effects of disulphides are known approximately, so the stability of any non-random conformation found in a one-disulphide intermediate can be estimated in the absence of the disulphide bond. The non-random conformation in the BPTI intermediates is sufficiently labile to indicate that it would be expected to be present in no more than 5% of the reduced BPTI molecules. There is much less non-random conformation apparent in ribonuclease A. Whatever conformations are represented in the bulk of these two reduced proteins cannot favour disulphide formation and further productive folding.  相似文献   

18.
A quantitative analysis has been made of the kinetics of disulphide bond formation, breakage, and rearrangement which occur during the folding and unfolding of the pancreatic trypsin inhibitor. The results have been used to infer the energetics of the protein conformational transitions which accompany each step.The folding transition is shown to be a co-operative process in which all intermediate states with one or two disulphide bonds are unstable relative to the unfolded, reduced protein and that in the fully folded conformation with three disulphide bonds. The approximate two-state nature of the transition at equilibrium was demonstrated experimentally. The folding transition of the inhibitor which has been determined kinetically is therefore analogous to that observed generally with other globular proteins.  相似文献   

19.
Chang JY  Li L 《Biochemistry》2002,41(26):8405-8413
The pathway of oxidative folding of alpha-lactalbumin (alpha LA) (four disulfide bonds) has been characterized by structural and kinetic analysis of the acid-trapped folding intermediates. In the absence of calcium, oxidative folding of alpha LA proceeds through highly heterogeneous species of one-, two-, three-, and four-disulfide (scrambled) intermediates to reach the native structure. In the presence of calcium, the folding intermediates of alpha LA comprise two predominant isomers (alpha LA-IIA and alpha LA-IIIA) adopting exclusively native disulfide bonds, including the two disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) located within the beta-sheet calcium binding domain. alpha LA-IIA is a two-disulfide species consisting of Cys(61)-Cys(77) and Cys(73)-Cys(91) disulfide bonds. alpha LA-IIIA contains Cys(61)-Cys(77), Cys(73)-Cys(91), and Cys(28)-Cys(111) disulfide bonds. The underlying mechanism of the contrasting folding pathways of calcium-bound and calcium-depleted alpha LA is congruent with the cause of diversity of disulfide folding pathways observed among many well-characterized three-disulfide proteins, including bovine pancreatic trypsin inhibitor and hirudin. Our study also reveals novel aspects of the folding mechanism of alpha LA that have not been described previously.  相似文献   

20.
This is the first phospholipase A2 (PLA2) structure from the family of kraits. The protein was isolated from Bungarus caeruleus (common krait) and the primary sequence was determined using cDNA approach. Three-dimensional structure of this presynaptic neurotoxic PLA2 from group I has been determined by molecular replacement method using the model of PLA2 component of beta2-bungarotoxin (Bungarus multicinctus) and refined using CNS package to a final R-factor of 20.1 % for all the data in resolution range 20.0-2.4 A. The final refined model comprises 897 protein atoms and 77 water molecules. The overall framework of krait phospholipase A2 with three long helices and two short antiparallel beta-strands is extremely similar to those observed for other group I PLA2s. However, the critical parts of PLA2 folding are concerned with its various functional loops. The conformations of these loops determine the efficiency of enzyme action and presence/absence of various pharmacological functions. In the present structure calcium-binding loop is occupied by a sodium ion with a 7-fold co-ordination. The conformation of loop 55-75 in krait PLA2 corresponds to a very high activity of the enzyme. A comparison of its sequence with multimeric PLA2s clearly shows the absence of critical residues such as Tyr3, Trp61 and Phe64, which are involved in the multimerization of PLA2 molecules. The protein shows anticoagulant and neurotoxic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号