首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Maintenance and deployment of the immune system are costly and are hence predicted to trade‐off with other resource‐demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes—I (Infection with Pseudomonas entomophila), S (Sham‐infection with MgSO4), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade‐offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade‐offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life‐history trade‐offs might play little role in maintaining variation in immunity.  相似文献   

4.
Insects of the order Diptera are vectors for parasitic diseases such as malaria, sleeping sickness and leishmania. In the search for genes encoding proteins involved in the antiparasitic response, we have used the protozoan parasite Octosporea muscaedomesticae for oral infections of adult Drosophila melanogaster. To identify parasite-specific response molecules, other flies were exposed to virus, bacteria or fungi in parallel. Analysis of gene expression patterns after 24 h of microbial challenge, using Affymetrix oligonucleotide microarrays, revealed a high degree of microbe specificity. Many serine proteases, key intermediates in the induction of insect immune responses, were uniquely expressed following infection of the different organisms. Several lysozyme genes were induced in response to Octosporea infection, while in other treatments they were not induced or downregulated. This suggests that lysozymes are important in antiparasitic defence.  相似文献   

5.
6.
7.
Lesser KJ  Paiusi IC  Leips J 《Aging cell》2006,5(4):293-295
Immunosenescence, the age‐related decline in immune response, is a well‐known consequence of aging. To date, most studies of age‐related changes in immune response focused on the cellular and physiological bases of this decline; we have virtually no understanding of the genetic basis of age‐related changes in the immune system or if indeed such control exists. We used 25 chromosome substitution lines of Drosophila melanogaster derived from a natural population to address three questions: (i) How is the function of the innate immune system influenced by age? (ii) Is there a genetic basis for phenotypic variation in immune response at different ages? (iii) Is there a genetic basis for differences in the way that age influences the immune function? Virgin females from each line were assayed for immune response using clearance of infection with Escherichia coli at 1 and 4 weeks of age. We found significant genetic variation among lines in immune response at each age. Unexpectedly, when averaged across all lines, the immune response actually improved with age. However, there was significant variation in the effect of age on immune response with 11 lines showing improvement, nine lines showing no change and five exhibiting a decline with age. There was no genetic correlation of immune response across ages suggesting that different loci contribute to variation in immune response at each age. The genetic component of the variation in immune response increased with age, a pattern predicted by the mutation accumulation model of senescence. However, this increase in variation resulted in part from the improvement of the immune response in some lines with age. Thus the observed changes in genetic variation in immune function with age are not entirely explained by the mutation accumulation model.  相似文献   

8.
9.
The evolution of immune function depends not only on variation in genes contributing directly to the immune response, but also on genetic variation in other traits indirectly affecting immunocompetence. In particular, sexual selection is predicted to trade-off with immunocompetence because the extra investment of resources needed to increase sexual competitiveness reduces investment in immune function. Additional possible immunological consequences of intensifying sexual selection include an exaggeration of immunological sexual dimorphism, and the reduction of condition-dependent immunological costs due to selection of 'good genes' (the immunocompetence handicap hypothesis, ICHH). We tested for these evolutionary possibilities by increasing sexual selection in laboratory populations of Drosophila melanogaster for 58 generations by reestablishing a male-biased sex ratio at the start of each generation. Sexually selected flies were larger, took longer to develop, and the males were more sexually competitive than males from control (equal sex ratio) lines. We found support for the trade-off hypothesis: sexually selected males were found to have reduced immune function compared to control males. However, we found no evidence that sexual selection promoted immunological sexual dimorphism because females showed a similar reduction in immune function. We found no evidence of evolutionary changes in the condition-dependent expression of immunocompetence contrary to the expectations of the ICHH. Lastly, we compared males from the unselected base population that were either successful (IS) or unsuccessful (IU) in a competitive mating experiment. IS males showed reduced immune function relative to IU males, suggesting that patterns of phenotypic correlation largely mirror patterns of genetic correlation revealed by the selection experiment. Our results suggest increased disease susceptibility could be an important cost limiting increases in sexual competitiveness in populations experiencing intense sexual selection. Such costs may be particularly important given the high intersex correlation, because this represents an apparent genetic conflict, preventing males from reaching their sexually selected optimum.  相似文献   

10.
Drosophila melanogaster has a robust and efficient innate immune system, which reacts to infections ranging from bacteria to fungi and, as discovered recently, viruses as well. The known Drosophila immune responses rely on humoral and cellular activities, similar to those found in the innate immune system of other animals. Recently, RNAi or 'RNA silencing' has arisen as a possible means by which Drosophila can react to a specific pathogens, transposons and retroviral elements, in a fashion similar to that of a traditional mammalian adaptive immune system instead of in a more generalized and genome encoded innate immune-based response. RNAi is a highly conserved regulation and defence mechanism, which suppresses gene expression via targeted RNA degradation directed by either exogenous dsRNA (cleaved into siRNAs) or endogenous miRNAs. In plants, RNAi has been found to act as an antiviral immune response system. Here we show that RNAi is an antiviral response used by Drosophila to combat infection by Drosophila X Virus, a birnavirus, as well. Additionally, we identify multiple core RNAi pathway genes, including piwi, vasa intronic gene (vig), aubergine (aub), armitage (armi), Rm62, r2d2 and Argonaute2 (AGO2) as having vital roles in this response in whole organisms. Our findings establish Drosophila as an ideal model for the study of antiviral RNAi responses in animals.  相似文献   

11.
12.
Summary Measurements of cAMP in early embryos of Drosophila melanogaster demonstrate that the dunce gene plays a major role, and the rutabaga gene a secondary role, in maternal regulation of embryonic cAMP content. Studying the double mutant combination, we find that variability in elevated cAMP content between individual embryos is associated with a wide variability in developmental potential. Embryos with about five times the normal cAMP content define a threshold between apparently normal and abnormal development. Measurements of cAMP content in anterior and posterior halves of embryos indicate that the posterior embryonic region, which is developmentally more sensitive to the effects of elevated cAMP than the anterior region, does not contain more cAMP than the anterior region. The variety of developmental defects observed is discussed in relation to possible targets of cAMP action. Offprint requests to: J.A. Kiger, Jr  相似文献   

13.
We found that the ingestion of Cryptococcus neoformans by Drosophila melanogaster resulted in the death of the fly but that the ingestion of Saccharomyces cerevisiae or the nonpathogenic Cryptococcus kuetzingii or Cryptococcus laurentii did not. The C. neoformans protein kinase A and RAS signal transduction pathways, previously shown to be involved in virulence in mammals, also played a role in killing DROSOPHILA: Mutation of the Toll immune response pathway, the predominant antifungal pathway of the fly, did not play a role in Drosophila defense following ingestion of the yeast. However, the Toll pathway was necessary for the clearance of C. neoformans introduced directly into the hemolymph of D. melanogaster and for the survival of systemically infected flies.  相似文献   

14.
Host larvae of Drosophila melanogaster injected with the eicosanoid biosynthesis inhibitor, dexamethasone, prior to parasitization by the wasp Leptopilina boulardi, exhibited significantly reduced rates of melanotic encapsulation in comparison with control and saline-injected larvae. The results of this investigation suggest that prostaglandins and other eicosanoids are involved as cell-signaling molecules in the hemocytic encapsulation reaction of D. melanogaster larvae.  相似文献   

15.
We have analysed the viability of cellular clones induced by mitotic recombination in Drosophila melanogaster/D. simulans hybrid females during larval growth. These clones contain a portion of either melanogaster or simulans genomes in homozygosity. Analysis has been carried out for the X and the second chromosomes, as well as for the 3L chromosome arm. Clones were not found in certain structures, and in others they appeared in a very low frequency. Only in abdominal tergites was a significant number of clones observed, although their frequency was lower than in melanogaster abdomens. The bigger the portion of the genome that is homozygous, the less viable is the recombinant melano-gaster/simulans hybrid clone. The few clones that appeared may represent cases in which mitotic recombination took place in distal chromosome intervals, so that the clones contained a small portion of either melanogaster or simulans chromosomes in homozygosity. Moreover, Lhr, a gene of D. simulans that suppresses the lethality of male and female melanogaster/simulans hybrids, does not suppress the lethality of the recombinant melanogaster/simulans clones. Thus, it appears that there is not just a single gene, but at least one per tested chromosome arm (and maybe more) that cause hybrid lethality. Therefore, the two species, D. melanogaster and D. simulans, have diverged to such a degree that the absence of part of the genome of one species cannot be substituted by the corresponding part of the genome of the other, probably due to the formation of co-adapted gene complexes in both species following their divergent evolution after speciation. The disruption of those coadapted gene complexes would cause the lethality of the recombinant hybrid clones.  相似文献   

16.

Background

The Drosophila melanogaster gene CG11501 is up regulated after a septic injury and was proposed to act as a negative regulator of the JAK/STAT signaling pathway. Diedel, the CG11501 gene product, is a small protein of 115 residues with 10 cysteines.

Methodology/Principal Findings

We have produced Diedel in Drosophila S2 cells as an extra cellular protein thanks to its own signal peptide and solved its crystal structure at 1.15 Å resolution by SIRAS using an iodo derivative. Diedel is composed of two sub domains SD1 and SD2. SD1 is made of an antiparallel β-sheet covered by an α-helix and displays a ferredoxin-like fold. SD2 reveals a new protein fold made of loops connected by four disulfide bridges. Further structural analysis identified conserved hydrophobic residues on the surface of Diedel that may constitute a potential binding site. The existence of two conformations, cis and trans, for the proline 52 may be of interest as prolyl peptidyl isomerisation has been shown to play a role in several physiological mechanisms. The genome of D. melanogaster contains two other genes coding for proteins homologous to Diedel, namely CG43228 and CG34329. Strikingly, apart from Drosophila and the pea aphid Acyrthosiphon pisum, Diedel-related sequences were exclusively identified in a few insect DNA viruses of the Baculoviridae and Ascoviridae families.

Conclusion/Significance

Diedel, a marker of the Drosophila antimicrobial/antiviral response, is a member of a small family of proteins present in drosophilids, aphids and DNA viruses infecting lepidopterans. Diedel is an extracellular protein composed of two sub-domains. Two special structural features (hydrophobic surface patch and cis/trans conformation for proline 52) may indicate a putative interaction site, and support an extra cellular signaling function for Diedel, which is in accordance with its proposed role as negative regulator of the JAK/STAT signaling pathway.  相似文献   

17.
Ecological immunology attempts to explain variation in immune function. Much of this work makes predictions about how potential hosts should invest in overall immunity. However, this ‘overall’ perspective under-emphasizes other critical aspects, such as the specificity, inducibility and timing of an immune response. Here, we investigate these aspects by examining gene regulation across several immune system components in both male and female Drosophila melanogaster prior to and after mating. To elucidate potentially important temporal dynamics, we also assayed several genes over time. We found that males and females emphasized different components of their immune system, however overall investment was similar. Specifically, the sexes emphasized different gene paralogues within major gene families, and males tended to invest more in gram-negative defence. By contrast, the inducibility of the immune response was both transient (lasting approx. 24 hours) and equal between the sexes. Furthermore, mating tended to induce humoral gene upregulation, while cell-mediated genes were unaffected. Within the humoral system, gram-negative bacterial defence genes exhibited a greater inducibility than those associated with fungal or gram-positive bacterial defence. Our results suggest that variation in the effectiveness of the immune response between the sexes may be driven by differences in emphasis rather than overall investment.  相似文献   

18.
Often, immunity is invoked in the context of infection, disease and injury. However, an ever alert and robust immune system is essential for maintaining good health, but resource investment into immunity needs to be traded off against allocation to other functions. In this study, we study the consequences of such a trade-off with growth by ascertaining various components of baseline innate immunity in two types of Drosophila melanogaster populations selected for fast development, in combination with either a long effective lifespan (FLJs) or a short effective lifespan (FEJs). We found that distinct immunological parameters were constitutively elevated in both, FLJs and FEJs compared to their ancestral control (JB) populations, and these constitutive elevated immunological parameters were associated with reduced insulin signalling and comparable total gut microbiota. Our results bring into focus the inter-relationship between egg to adult development time, ecdysone levels, larval gut microbiota, insulin signalling, adult reproductive longevity and immune function. We discuss how changes in selection pressures operating on life-history traits can modulate different components of immune system.  相似文献   

19.
A selection experiment for sternopleural bristle number in Drosophila melanogaster was undertaken to analyze the correlated effects on recombination. Replicate lines were subjected to divergent directional selection and to stabilizing selection. Recombination rates for markers on chromosomes 2 (dp-cn-bw) and 3 (se-ss-ro) were compared to those from a control. All lines responded as predicted for bristle number. Lines selected for both increased and decreased bristle number exhibited significantly increased recombination rates. The predicted recombination response from stabilizing selection is suggested by our data, but only one comparison is statistically significant. These results, taken with other studies, support the proposal that genetic recombination enhances individual fitness when populations are experiencing environmental change. Less conclusively, our results suggest that populations undergoing stabilizing selection may respond by reducing their rates of crossing over.  相似文献   

20.
Hybrid dysgenesis-induced response to selection in Drosophila melanogaster   总被引:1,自引:0,他引:1  
In Drosophila melanogaster, the P-M and I-R systems of hybrid dysgenesis are associated with high rates of transposition of P and I elements, respectively, in the germlines of dysgenic hybrids formed by crossing females of strains without active elements to males of strains containing them. Transposition rates are not markedly accelerated in the reciprocal, nondysgenic hybrids. Previous attempts to evaluate the extent to which hybrid dysgenesis-mediated P transposition contributes to mutational variance for quantitative characters by comparing the responses to selection of P-M dysgenic and nondysgenic hybrids have given variable results. This experimental design has been extended to include an additional quantitative trait and the I-R hybrid dysgenesis system. The selection responses of lines founded from both dysgenic and nondysgenic crosses showed features that would be expected from the increase in frequency of initially rare genes with major effects on the selected traits. These results differ from those of previous experiments which showed additional selection response only in lines started from dysgenic crosses, and can be explained by the occasional occurrence of large effect transposable element-induced polygenic mutations in both dysgenic and nondysgenic selection lines. High rates of transposition in populations founded from nondysgenic crosses may account for the apparently contradictory results of the earlier selection experiments, and an explanation is proposed for its occurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号