首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present the gene organization and DNA sequence of the Streptomyces lividans galactose utilization genes. Complementation of Escherichia coli galE, galT, or galK mutants and DNA sequence analysis were used to demonstrate that the galactose utilization genes are organized within an operon with the gene order galT, galE, and galK. Comparison of the inferred protein sequences for the S. lividans gal gene products to the corresponding E. coli and Saccharomyces carlbergensis sequences identified regions of structural homology within each of the galactose utilization enzymes. Finally, we discuss a potential relationship between the gene organization of the operon and the functional roles of the gal enzymes in cellular metabolism.  相似文献   

3.
4.
5.
6.
We have previously cloned the genes for synthesis of capsular polysaccharide (cps) and slime from Erwinia stewartii in cosmid pES2144. In this study, pES2144 was shown to complement 14 spontaneous cps mutants. These mutants were characterized by probing Southern blots of mutant genomic DNA with pES2144; insertions were detected in four mutants and deletions in six mutants. Genetic and physical maps of the pES2144 cps region were constructed by subcloning, restriction analysis, and transposon mutagenesis with Tn5, Tn5lac, and Tn3HoHo1. Mutations affecting the ability of pES2144 to restore mucoidy to cps deletion mutants were located in five regions, designated cpsA to cpsE. None of the cps mutants were able to cause systemic wilting of corn plants, and mutations in cps regions B to E further abolished the ability of the bacterium to cause watersoaked lesions on seedlings. The gene for uridine-5'-diphosphogalactose 4-epimerase (galE) was linked to the cps genes on pES2144. In E. stewartii, galE was constitutively expressed, whereas the genes for galactokinase (galK) and galactose-1-phosphate uridyltransferase (galT) were inducible and not linked to galE. Thus, galE does not appear to be part of the gal operon in this species.  相似文献   

7.
Precise frameshift and nonsense mutations were introduced into the region preceding the galactokinase gene (galK) of Escherichia coli. These mutations after the position at which upstream translation terminates relative to the galK translation initiation signal. Constructions were characterized that allow ribosomes to stop selectively before, within or downstream from the galK initiation signal. The effects of these mutations on galK expression were monitored. Galactokinase levels are highest when upstream translation terminates within the galK initiation region. In contrast, when translation stops either upstream or down stream from the galK start site, galK expression is drastically reduced. These results demonstrate that the galK gene is translationally coupled to the gene immediately preceding galK in the gal operon (that is, galT), and that the coupling effect depends primarily on the position at which upstream translation terminates relative to the galK start site. Possible mechanisms and implications of this translational coupling phenomenon are discussed.  相似文献   

8.
Galactose metabolism mutants of Erwinia amylovora were created by transposon insertions and characterized for their growth properties and interaction with plant tissue. The nucleotide sequence of the galE gene was determined. The gene, which encodes UDP-galactose 4-epimerase, shows homology to the galE genes of Escherichia coli, Neisseria gonorrhoeae, Rhizobium meliloti, and other gram-negative bacteria. Cloned DNA with the galE and with the galT and galK genes did not share borders, as judged by the lack of common fragments in hybridization with chromosomal DNA. These genes are thus located separately on the bacterial chromosome. In contrast to the gal operon of E. coli, the galE gene of E. amylovora is constitutively expressed, independently of the presence of galactose in the medium. The function of the galE gene but not of the galT or galK gene is required for bacterial virulence on pear fruits and seedlings. In the absence of galactose, the galE mutant was deficient in amylovoran synthesis. Subsequently, the galE mutant cells elicited host defense reactions, and they were not stained by fluorescein isothiocyanate-labelled lectin, which efficiently binds to amylovoran capsules of E. amylovora. The mutation affected the side chains of bacterial lipopolysaccharide, but an intact O antigen was not required for virulence. This was shown with another mutant, which could be complemented for virulence but not for side chain synthesis of lipopolysaccharide.  相似文献   

9.
10.
The Clostridium pasteurianum galactokinase gene was cloned by complementation, of the galK locus, into Escherichia coli. Restriction enzyme analysis subcloning and Tn5 mutagenesis indicated that the gene was located on a 1.8 X 10(3) base-pair ClaI-Sau3A fragment that encoded a polypeptide of approximately 40 Mr. Although the C. pasteurianum and the E. coli galactokinases have similar subunit molecular weights, Southern hybridization analysis indicated no strong homology between their genes. Even though this clone showed a low level of galactokinase expression, the Gal+ phenotype, provided by the clostridial galactokinase, was unstable in E. coli, and the gene was frequently inactivated by the spontaneous acquisition of insertion sequences. A second clone containing this gene on a large restriction fragment was isolated by hybridization. This clone was unable to grow on galactose-containing media due to the overproduction of galactokinase. Comparison of the plasmids from these two clones revealed that the second contained an additional 300 base-pairs located at one end of the galactokinase gene. Appropriate operon fusions with a promoter-less E. coli galactokinase gene indicated that these additional 300 base-pairs had promoter activity in E. coli. The DNA sequence of this region which lies upstream of the C. pasteurianum galactokinase gene was determined and compared with that from several clones producing high, low or undetectable amounts of galactokinase. The reasons for the high and low level expression and for the instability of the C. pasteurianum galactokinase in E. coli are discussed. The presence of the galactokinase suggests that galactose is used in C. pasteurianum through the Leloir pathway via galactose 1-phosphate.  相似文献   

11.
Summary A modified procedure for the purification of E. coli galactose-1-phosphate uridyl transferase (E.C. 2.7.6.12) was developed which reproducibly gives pure enzyme. The purified enzyme was shown to be a dimeric protein with a subunit molecular weight of 41,000 and its amino acid composition and content of free sulfhydryl groups were determined. The N-terminal and C-terminal amino acid sequences were found to be NH2-thr-gln-phe-asn-pro-val-asp and -ser(val leu)-ala-COOH respectively. This N-terminal sequence allowed the identification of the start of the transferase gene in the DNA sequence determined by GRINDLEY. Furthermore it appears to define a nine base intercistronic region between the epimerase and transferase genes.Abbreviations Cyclic AMP Cyclic adenosine 2151 monophosphate - DPN Diphosphopyridine nucleotide - UDP Uridine diphosphate - EDTA Ethylene diamine tetra acetic acid - SDS sodium dodecyl sulfate - NEM N-ethylmaleimide  相似文献   

12.
The gal locus from Haemophilus influenzae was cloned and sequenced. Four genes were identified by amino acid homology: galT, galK, galM and galR. The coding direction of galT, galK and galM is divergent from that of galR. There are non-coding intergenic regions between galR and galT, galT nd galK, and galK and galM. Deletion-insertion mutations constructed in galK and galE, which is in lic3, were moved into the H. influenzae chromosome generating each of the single mutants as well as the double gal mutant. Even when grown on complex media, the double mutant failed to react with an anti-lipopolysaccharide monoclonal antibody known to react with a digalactoside epitope. Both the galE single and the galE galK double mutants were serum-sensitive and relatively avirulent in infant rats, indicating a critical role for galactose metabolism, and providing evidence to support a central role for lipopolysaccharide, in H. influenzae virulence.  相似文献   

13.
Cloning of the galactokinase gene (galK) from Streptomyces coelicolor A3(2)   总被引:6,自引:0,他引:6  
Streptomyces coelicolor A3(2) and Streptomyces lividans 66 strains were shown to be sensitive to the galactose analogue 2-deoxy-D-galactose. Spontaneous resistant mutants were isolated that were Gal- and lacked the enzyme galactokinase. The galK gene (structural gene for galactokinase) from S. coelicolor was cloned into S. lividans using the low copy number vector pIJ922. The resulting plasmid (pMT650), which contained a 14 kb insert, complemented gal mutations in both species. The presence of the galK gene on a 2.8 kb EcoRI fragment was confirmed by expressing it in Escherichia coli where it complemented a well characterized galK mutation.  相似文献   

14.
As part of a study on the effect of low temperature on cellular regulatory processes, a class of lactose-negative mutants of Escherichia coli K-12 was isolated which could use lactose as a sole carbon and energy source at 37 C, but which could not use this sugar at 20 C. The lactose operon of the mutants functioned normally at 20 C. Galactose exhibited a strong inhibitory effect on growth, especially at 20 C. Growth of the mutants on glycerol was stopped at 20 C and slowed considerably at 37 C if galactose was added to the medium. Making the mutants galactose-positive eliminated the cold sensitivity of lactose utilization. One mutant was shown to be galactose-1-phosphate uridyl transferase-negative, galactose-kinase heat-sensitive, and uridine diphosphate-galactose-4-epimerase-positive. It is postulated that the mutant is able to phosphorylate galactose at 20 C (if only at a very low rate), but lacking transferase it is poisoned by the accumulation of galactose-1-phosphate. At 37 C, galactokinase is nonfunctional and the mutant grows on the glucose moiety of lactose.  相似文献   

15.
16.
17.
The western grey kangaroo (Macropus fuliginosus) was found to be deficient for galactose-1 phosphate uridyl transferase (GPUT). This species could be used therefore for studies of gene therapy techniques. An improved GPUT assay procedure was developed. It was found that phage particles injected intravenously remain in the blood of kangaroos until the particles are removed by the reticuloendothelial system or, if this system is overloaded, the particles are inactivated by the immune system four days later. No effective transgenosis was detected of the bacterial gal operon contained in the phage used.  相似文献   

18.
The chromosomally encoded galactose utilization (gal) operons of Salmonella typhimurium and S. typhi were each cloned on similar 5.5-kilobase HindIII fragments into pBR322 and were identified by complementation of Gal- Escherichia coli strains. Restriction endonuclease analyses indicated that these Salmonellae operons share considerable homology, but some heterogeneities in restriction sites were observed. Subcloning and exonuclease mapping experiments showed that both operons have the same genetic organization as that established for the E. coli gal operon (i.e., 5' end, promoter, epimerase, transferase, kinase, and 3' end). Two gal operator regions (oE and oI) of S. typhimurium, identified by repressor titration in an E. coli superrepressor [galR(Sup)] mutant, were sequenced and found to flank the promoter region. This promoter region is identical to the -10 and -35 regions of the E. coli gal operon. Minicell studies demonstrated that the three gal structural genes of S. typhimurium encode separate polypeptides of 39 kilodaltons (kDa) (epimerase, 337 amino acids [aa's]), 41 kDa (transferase, 348 aa's), and 43 kDa (kinase, 380 aa's). Despite functional and organizational similarities, DNA sequence analysis revealed that the S. typhimurium gal genes show less than 70% homology to the E. coli gal operon. Because of codon degeneracy, the deduced amino acid sequences of these polypeptides are highly conserved (greater than 90% homology) as compared with those of the E. coli gal enzymes. These studies have defined basic genetic parameters of the gal genes of two medically important Salmonella species, and our findings support the hypothesized divergent evolution of E. coli and Salmonella spp. from a common ancestral parent bacterium.  相似文献   

19.
A convenient new procedure for the purification of galactokinase, galactose-1-phosphate uridyltransferase, and UDP-galactose 4-epimerase overexpressed in Escherichia coli is presented. The procedure is shorter than any other described in the literature and facilitates the purification of the three recombinant enzymes in considerable amounts and at high purity and specific activity. The purified gal operon enzymes were biochemically characterized by gel-filtration column chromatography and isoelectric focusing, and the Km values for their substrates were determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号