首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gulls (Laridae excluding Sternidae) appear to be the only shorebirds (Charadriiformes) that have a short wavelength sensitive type 1 (SWS1) cone pigment opsin tuned to ultraviolet (UV) instead of violet. However, the apparent UV-sensitivity has only been inferred indirectly, via the interpretation that the presence of cysteine at the key amino acid position 90 in the SWS1 opsin confers UV sensitivity. Unless the cornea and the lens efficiently transmit UV to the retina, gulls might in effect be similar to violet-sensitive birds in spectral sensitivity even if they have an ultraviolet sensitive (UVS) SWS1 visual pigment. We report that the spectral transmission of the cornea and lens of great black-backed Larus marinus and herring gulls L. argentatus allow UV-sensitivity, having a λT0.5 value, 344 nm, similar to the ocular media of UV sensitive birds. By molecular sequencing of the second α-helical transmembrane region of the SWS1 opsin gene we could also infer that 15 herring gulls and 16 yellow-legged gulls L. michahellis, all base-pair identical, are genetically UV-sensitive.  相似文献   

2.
To assess the spectral sensitivities of the retinal visual pigments from the North Atlantic right whale (Eubalaena glacialis), we have cloned and sequenced two exons from the rod opsin gene and two exons from the middle‐wavelength sensitive (MWS) cone opsin gene in order to determine the amino acids at positions known to be key regulators of the spectral location of the absorbance maximum (λmax). Based on previous mutagenesis models we estimate that the right whale possesses a rod visual pigment with a λmax of 499 nm and a MWS cone visual pigment with a λmax of 524 nm. Although the MWS cone visual pigment from the right whale is blue‐shifted in its spectral sensitivity like those from odontocetes, the spectral sensitivity of the right whale rod visual pigment is similar to those from terrestrial mammals.  相似文献   

3.
Previous investigations of vision and visual pigment evolution in aquatic predators have focused on fish and crustaceans, generally ignoring the cephalopods. Since the first cephalopod opsin was sequenced in late 1980s, we now have data on over 50 cephalopod opsins, prompting this functional and phylogenetic examination. Much of this data does not specifically examine the visual pigment spectral absorbance position (λmax) relative to environment or lifestyle, and cephalopod opsin functional adaptation and visual ecology remain largely unknown. Here we introduce a new protocol for photoreceptor microspectrophotometry (MSP) that overcomes the difficulty of bleaching the bistable visual pigment and that reveals eight coastal coleoid cephalopods to be monochromatic with λmax varying from 484 to 505 nm. A combination of current MSP results, the λmax values previously characterized using cephalopod retinal extracts (467–500 nm) and the corresponding opsin phylogenetic tree were used for systematic comparisons with an end goal of examining the adaptations of coleoid visual pigments to different light environments. Spectral tuning shifts are described in response to different modes of life and light conditions. A new spectral tuning model suggests that nine amino acid substitution sites may determine the direction and the magnitude of spectral shifts.  相似文献   

4.
Rod and cone visual pigments of 11 marine carnivores were evaluated. Rod, middle/long-wavelength sensitive (M/L) cone, and short-wavelength sensitive (S) cone opsin (if present) sequences were obtained from retinal mRNA. Spectral sensitivity was inferred through evaluation of known spectral tuning residues. The rod pigments of all but one of the pinnipeds were similar to those of the sea otter, polar bear, and most other terrestrial carnivores with spectral peak sensitivities (λmax) of 499 or 501 nm. Similarly, the M/L cone pigments of the pinnipeds, polar bear, and otter had inferred λmax of 545 to 560 nm. Only the rod opsin sequence of the elephant seal had sensitivity characteristic of adaptation for vision in the marine environment, with an inferred λmax of 487 nm. No evidence of S cones was found for any of the pinnipeds. The polar bear and otter had S cones with inferred λmax of ∼440 nm. Flicker-photometric ERG was additionally used to examine the in situ sensitivities of three species of pinniped. Despite the use of conditions previously shown to evoke cone responses in other mammals, no cone responses could be elicited from any of these pinnipeds. Rod photoreceptor responses for all three species were as predicted by the genetic data.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
Birds have four spectrally distinct types of single cones that they use for colour vision. It is often desirable to be able to model the spectral sensitivities of the different cone types, which vary considerably between species. However, although there are several mathematical models available for describing the spectral absorption of visual pigments, there is no model describing the spectral absorption of the coloured oil droplets found in three of the four single cone types. In this paper, we describe such a model and illustrate its use in estimating the spectral sensitivities of single cones. Furthermore, we show that the spectral locations of the wavelengths of maximum absorbance (max) of the short- (SWS), medium- (MWS) and long- (LWS) wavelength-sensitive visual pigments and the cut-off wavelengths (cut) of their respective C-, Y- and R-type oil droplets can be predicted from the max of the ultraviolet- (UVS)/violet- (VS) sensitive visual pigment.  相似文献   

6.
We report the first study of the relation between the wavelength of maximum absorbance (λmax) and the photoactivation energy (E a) in invertebrate visual pigments. Two populations of the opossum shrimp Mysis relicta were compared. The two have been separated for 9,000 years and have adapted to different spectral environments (“Sea” and “Lake”) with porphyropsins peaking at λmax=529 nm and 554 nm, respectively. The estimation of E a was based on measurement of temperature effects on the spectral sensitivity of the eye. In accordance with theory (Stiles in Transactions of the optical convention of the worshipful company of spectacle makers. Spectacle Makers’ Co., London, 1948), relative sensitivity to long wavelengths increased with rising temperature. The estimates calculated from this effect are E a,529=47.8±1.8 kcal/mol and E a,554=41.5±0.7 kcal/mol (different at P<0.01). Thus the red-shift of λmax in the “Lake” population, correlating with the long-wavelength dominated light environment, is achieved by changes in the opsin that decrease the energy gap between the ground state and the first excited state of the chromophore. We propose that this will carry a cost in terms of increased thermal noise, and that evolutionary adaptation of the visual pigment to the light environment is directed towards maximizing the signal-to-noise ratio rather than the quantum catch.  相似文献   

7.
Previous evidence suggested that notothenioid fish had lost red-sensitive (LWS) visual pigment and photoreceptors, but retained ultraviolet-sensitive (SWS1), blue-sensitive (SWS2), and green-sensitive (RH2) pigments. We used RT-PCR and Southern blot to isolate the LWS opsin gene in five notothenioid species. We determined full-coding LWS opsin sequences and genomic sequences. The expected peak absorbance of the LWS opsin, based on the five-sites rule that is primarily responsible for the spectral sensitivities in vertebrates, ranged from 541 to 553 nm. In Antarctic waters, light of this wavelength penetrates to dozens of meters. Thus, we conclude that notothenioids use tetrachromatic color vision in shallower waters, at least during the Antarctic summer.  相似文献   

8.
This study examines the diverse maximum wavelength absorption (λmax) found in crayfishes (Decapoda: Cambaridae and Parastacidae) and the associated genetic variation in their opsin locus. We measured the wavelength absorption in the photoreceptors of six species that inhabit environments of different light intensities (i.e., burrows, streams, standing waters, and subterranean waters). Our results indicate that there is relatively little variation in λmax (522–530 nm) among species from different genera and families. The existing variation did not correlate with the habitat differences of the crayfishes studied. We simultaneously sequenced the rhodopsin gene to identify the amino acid replacements that affect shifts in maximum wavelength absorption. We then related these to changes that correlated with shifts in λmax by reconstructing ancestral character states using a maximum-likelihood approach. Using amino acid sequences obtained from five species (all were 301 amino acids in length), we identified a number of candidates for producing shifts of 4 to 8 nm in λmax. These amino acid replacements occurred in similar regions to those involved in spectral shifts in vertebrates. Received: 12 March 1997 / Accepted: 3 June 1997  相似文献   

9.
10.
The role of sequence variation in the spectral tuning of color vision is well established in many systems. This includes the cichlids of Lake Victoria where sequence variation has been linked to environmental light gradients and speciation. The cichlids of Lake Malawi are a similar model for visual evolution, but the role of gene sequence variation in visual tuning between closely related species is unknown. This work describes such variation in multiple species of two rock-dwelling genera: Metriaclima and Labidochromis. Genomic DNA for seven cone opsin genes was sequenced and the structure of the opsin proteins was inferred. Retinal binding pocket polymorphisms were identified and compared to available data regarding spectral absorbance shifts. Sequence variation with known or potential effects on absorbance spectra were found in four genes: SWS1 (UV sensitive), SWS2B (violet sensitive), RH2Aβ (green sensitive), and LWS (red sensitive). Functional variation was distributed such that each genus had both a variable short-wavelength and long-wavelength sensitive opsin. This suggests spectral tuning is important at the margins of the cichlid visual spectrum. Further, there are two SWS1 opsin alleles that differ in sensitivity by 10 nm and are >2 MY divergent. One of these occurs in a haplotype block >1 kb. Potential haplotype blocks were found around the RH2 opsin loci. These data suggest that molecular diversification has resulted in functionally unique alleles and changes to the visual system. These data also suggest that opsin sequence variation tunes spectral sensitivities between closely related species and that the specific regions of spectral tuning are genus-specific.  相似文献   

11.
Colour vision is mediated by the expression of different visual pigments in photoreceptors of the vertebrate retina. Each visual pigment is a complex of a protein (opsin) and a vitamin A chromophore; alterations to either component affects visual pigment absorbance and, potentially, the visual capabilities of an animal. Many species of fish undergo changes in opsin expression during retinal development. In the case of salmonid fishes the single cone photoreceptors undergo a switch in opsin expression from SWS1 (ultraviolet sensitive) to SWS2 (blue-light sensitive) starting at the yolk-sac alevin stage, around the time when they first experience light. Whether light may initiate this event or produce a plastic response in the various photoreceptors is unknown. In this study, Chinook salmon Oncorhynchus tshawytscha were exposed to light from the embryonic (5 days prior to hatching) into the yolk sac alevin (25 days post hatching) stage and the spectral phenotype of photoreceptors assessed with respect to that of unexposed controls by in situ hybridization with opsin riboprobes. Light exposure did not change the spectral phenotype of photoreceptors, their overall morphology or spatial arrangement. These results concur with those from a variety of fish species and suggest that plasticity in photoreceptor spectral phenotype via changes in opsin expression may not be a widespread occurrence among teleosts.  相似文献   

12.
The spectral absorption characteristics of the retinal photoreceptors of the blue tit (Parus caeruleus) and blackbird (Turdus merula) were investigated using microspectrophotometry. The retinae of both species contained rods, double cones and four spectrally distinct types of single cone. Whilst the visual pigments and cone oil droplets in the other receptor types are very similar in both species, the wavelength of maximum sensitivity (λmax) of long-wavelength-sensitive single and double cone visual pigment occurs at a shorter wavelength (557 nm) in the blackbird than in the blue tit (563 nm). Oil droplets located in the long-wavelength-sensitivesingle cones of both species cut off wavelengths below 570–573 nm, theoretically shifting cone peak spectral sensitivity some 40 nm towards the long-wavelength end of the spectrum. This raises the possibility that the precise λmax of the long-wavelength-sensitive visual pigment is optimised for the visual function of the double cones. The distribution of cone photoreceptors across the retina, determined using conventional light and fluorescence microscopy, also varies between the two species and may reflect differences in their visual ecology. Accepted: 8 January 2000  相似文献   

13.
Relatively little is known about the physical structure and ecological adaptations of elasmobranch sensory systems. In particular, elasmobranch vision has been poorly studied compared to the other senses. Virtually nothing is known about whether elasmobranchs possess multiple cone types, and therefore the potential for colour vision, or how the spectral tuning of their visual pigments is adapted to their different lifestyles. In this study, we measured the spectral absorption of the rod and cone visual pigments of the blue-spotted maskray, Dasyatis kuhlii, using microspectrophotometry. D. kuhlii possesses a rod visual pigment with a wavelength of maximum absorbance (λmax) at 497 nm and three spectrally distinct cone types with λmax values at 476, 498 and 552 nm. Measurements of the spectral transmittance of the ocular media reveal that wavelengths below 380 nm do not reach the retina, indicating that D. kuhlii is relatively insensitive to ultraviolet radiation. Topographic analysis of retinal ganglion cell distribution reveals an area of increased neuronal density in the dorsal retina. Based on peak cell densities and using measurements of lens focal length made using laser ray tracing and sections of frozen eyes, the estimated spatial resolving power of D. kuhlii is 4.10 cycles per degree.  相似文献   

14.
The capacity for cone‐mediated color vision varies among nocturnal primates. Some species are colorblind, having lost the functionality of their short‐wavelength‐sensitive‐1 (SWS1) opsin pigment gene. In other species, such as the aye‐aye (Daubentonia madagascariensis), the SWS1 gene remains intact. Recent studies focused on aye‐ayes indicate that this gene has been maintained by natural selection and that the pigment has a peak sensitivity (λmax) of 406 nm, which is ~20 nm closer to the ultraviolet region of the spectrum than in most primates. The functional significance behind the retention and unusual λmax of this opsin pigment is unknown, and it is perplexing given that all mammals are presumed to be colorblind in the dark. Here we comment on this puzzle and discuss recent findings on the color vision intensity thresholds of terrestrial vertebrates with comparable optics to aye‐ayes. We draw attention to the twilight activities of aye‐ayes and report that twilight is enriched in short‐wavelength (bluish) light. We also show that the intensity of twilight and full moonlight is probably sufficient to support cone‐mediated color vision. We speculate that the intact SWS1 opsin pigment gene of aye‐ayes is a crepuscular adaptation and we report on the blueness of potential visual targets, such as scent marks and the brilliant blue arils of Ravenala madagascariensis.  相似文献   

15.
The visual pigments and photoreceptor types in the retinas of three species of Pacific salmon (coho, chum, and chinook) were examined using microspectrophotometry and histological sections for light microscopy. All three species had four cone visual pigments with maximum absorbance in the UV (max: 357–382 nm), blue (max: 431–446 nm), green (max: 490–553 nm) and red (max: 548–607 nm) parts of the spectrum, and a rod visual pigment with max: 504–531 nm. The youngest fish (yolk-sac alevins) did not have blue visual pigment, but only UV pigment in the single cones. Older juveniles (smolts) had predominantly single cones with blue visual pigment. Coho and chinook smolts (>1 year old) switched from a vitamin A1- to a vitamin A2-dominated retina during the spring, while the retina of chum smolts and that of the younger alevin-to-parr coho did not. Adult spawners caught during the Fall had vitamin A2-dominated retinas. The central retina of all species had three types of double cones (large, medium and small). The small double cones were situated toward the ventral retina and had lower red visual pigment max than that of medium and large double cones, which were found more dorsally. Temperature affected visual pigment max during smoltification.  相似文献   

16.
The spectral, angular and polarization sensitivities of photoreceptors in the compound eye of the monarch butterfly (Danaus plexippus) are examined using electrophysiological methods. Intracellular recordings reveal a spectrally homogenous population of UV receptors with optical axes directed upwards and ≥10° to the contralateral side. Based on optical considerations and on the opsin expression pattern (Sauman et al. 2005), we conclude that these UV receptors belong to the anatomically specialized dorsal rim area (DRA) of the eye. Photoreceptors in the main retina with optical axes <10° contralateral or ipsilateral have maximal sensitivities in the UV (λmax≤340 nm), the blue (λmax=435 nm) or in the long-wave range (green, λmax=540 nm). The polarization sensitivity (PS) of the UV receptors in the DRA is much higher (PS=9.4) than in the UV cells (PS=2.9) or green cells (PS=2.8) of the main retina. The physiological properties of the photoreceptors in the DRA and in the main retina fit closely with the anatomy and the opsin expression patterns described in these eye regions. The data are discussed in the light of present knowledge about polarized skylight navigation in Lepidopterans.  相似文献   

17.
Vision represents an excellent model for studying adaptation, given the genotype‐to‐phenotype map that has been characterized in a number of taxa. Fish possess a diverse range of visual sensitivities and adaptations to underwater light, making them an excellent group to study visual system evolution. In particular, some speciose but understudied lineages can provide a unique opportunity to better understand aspects of visual system evolution such as opsin gene duplication and neofunctionalization. In this study, we showcase the visual system evolution of neotropical Characiformes and the spectral tuning mechanisms they exhibit to modulate their visual sensitivities. Such mechanisms include gene duplications and losses, gene conversion, opsin amino acid sequence and expression variation, and A1/A2‐chromophore shifts. The Characiforms we studied utilize three cone opsin classes (SWS2, RH2, LWS) and a rod opsin (RH1). However, the characiform's entire opsin gene repertoire is a product of dynamic evolution by opsin gene loss (SWS1, RH2) and duplication (LWS, RH1). The LWS‐ and RH1‐duplicates originated from a teleost specific whole‐genome duplication as well as characiform‐specific duplication events. Both LWS‐opsins exhibit gene conversion and, through substitutions in key tuning sites, one of the LWS‐paralogues has acquired spectral sensitivity to green light. These sequence changes suggest reversion and parallel evolution of key tuning sites. Furthermore, characiforms' colour vision is based on the expression of both LWS‐paralogues and SWS2. Finally, we found interspecific and intraspecific variation in A1/A2‐chromophores proportions, correlating with the light environment. These multiple mechanisms may be a result of the diverse visual environments where Characiformes have evolved.  相似文献   

18.
Snakes are known to express a rod visual opsin and two cone opsins, only (SWS1, LWS), a reduced palette resulting from their supposedly fossorial origins. Dipsadid snakes in the genus Helicops are highly visual predators that successfully invaded freshwater habitats from ancestral terrestrial-only habitats. Here, we report the first case of multiple SWS1 visual pigments in a vertebrate, simultaneously expressed in different photoreceptors and conferring both UV and violet sensitivity to Helicops snakes. Molecular analysis and in vitro expression confirmed the presence of two functional SWS1 opsins, likely the result of recent gene duplication. Evolutionary analyses indicate that each sws1 variant has undergone different evolutionary paths with strong purifying selection acting on the UV-sensitive copy and dN/dS ∼1 on the violet-sensitive copy. Site-directed mutagenesis points to the functional role of a single amino acid substitution, Phe86Val, in the large spectral shift between UV and violet opsins. In addition, higher densities of photoreceptors and SWS1 cones in the ventral retina suggest improved acuity in the upper visual field possibly correlated with visually guided behaviors. The expanded visual opsin repertoire and specialized retinal architecture are likely to improve photon uptake in underwater and terrestrial environments, and provide the neural substrate for a gain in chromatic discrimination, potentially conferring unique color vision in the UV–violet range. Our findings highlight the innovative solutions undertaken by a highly specialized lineage to tackle the challenges imposed by the invasion of novel photic environments and the extraordinary diversity of evolutionary trajectories taken by visual opsin-based perception in vertebrates.  相似文献   

19.
20.
Echolocating bats are able to orientate, navigate and forage without visual cues. To probe the role of vision in bats, we studied the visual opsin genes from the echolocating little brown bat (Myotis lucifugus). Short-wavelength sensitive (SWS1) opsin, middle/long-wavelength sensitive (M/LWS) opsin and rhodopsin cDNA sequences were identified from the Ensembl database and validated by the sequencing of genomic DNA. We retrieved the published orthologous genes from eleven additional representative species of mammals from GenBank and conducted an evolutionary analysis. We found that the M/LWS opsin and rhodopsin genes were both under strong purifying selection, whereas the SWS1 opsin gene has undergone positive selection at two amino acid sites and one lineage, though the main evolutionary force is still purifying selection. Two-ratio model of the SWS1 opsin gene revealed that the ω ratio for the little brown bat lineage was nearly three times lower than the background ratio, suggesting a much stronger functional constraint. Our relative rate tests show the little brown bat has a lower nonsynonymous substitution rate than those in other mammals (on average 32% lower) for the SWS1 opsin gene. However, no such significant differences were detected for the M/LWS opsin and rhodopsin genes. The results of the relative ratio tests are consistent with that of tests for selection, showing a history of purifying selection on the little brown bat opsin genes. These findings suggest a functional role of vision in the little brown bat despite being nocturnal and using echolocation. We speculate that this echolocating bat may be able to use visual cues to orientate, navigate and forage at night, to discriminate color under moonlight and starlight conditions, or to avoid predation by diurnal raptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号