首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the beginning of 1996 coral reefs in Morrocoy National Park, Venezuela, suffered an unprecedented mass mortality event. As a consequence, live coral cover dropped to 2-10%. One of the few reefs that kept live coral cover over 35% was Cayo Sombrero; nonetheless, the presence of some coral diseases has been detected within the past 2 years, representing a new source of coral mortality. Due to this situation, this study started a monitoring program on the incidence of coral diseases and syndromes in the reef of Cayo Sombrero. The CARICOMP protocol was used in order to evaluate reef health. Ten parallel band-transects (20 x 2m) where established at two depth intervals: Five between 3-8 m and five between 8-12 m, and the frequency of both, healthy and unhealthy colonies of each coral species was recorded along each band transect. In addition to other sources of coral damage (predation, siltation, etc), significant differences in disease incidence between the two depths intervals were tested with a Kruskall-Wallis test. The main problems observed were coral diseases such as yellow band (4.2%), dark spots (1.61%) and white plague-II (1.4%), mainly affecting Montastraea faveolata, M. annularis and Siderastrea siderea. Siltation, affecting massive colonies, such as Colpophyllia natans and Diploria strigosa; algae overgrowth, predation, anchor damage, and bleaching. Significant differences were found in the incidence of unhealthy (Kruskall-Wallis, p < 0.05) bleached (Kruskall-Wallis, p < 0.05) and colonies affected by siltation (Kruskall-Wallis, p < 0.05). More than 60% of the 585 coral colonies surveyed at both depths were found to be healthy, indicating that the Cayo Sombrero reef is still in good conditions compared to other localities in the Park. This study stresses the need to conduct early monitoring programs that survey coral disease incidence as a source of mortality for this coral reef.  相似文献   

2.
Coral diseases have been reported as a major problem affecting Caribbean coral reefs. During August 2000, a coral mortality event of White Plague Disease-II (WPD-II) was observed at Madrizqui Reef in Los Roques National Park, Venezuela. This disease was identified as the major cause of coral mortality, affecting 24% of all colonies surveyed (n = 1 439). Other diseases such as Black Band Disease (BBD), Yellow Blotch Disease (YBD), Dark Spots Disease (DSD) and White Band Disease (WBD) were also recorded, but showed a lower incidence (0.14-0.97%). Two depth intervals, D1 (5.5-6.5 m) and D2 (9-9.5 m) were surveyed with two sets of three band transects 50 x 2 m long, placed parallel to the long axis of the reef. All healthy and injured corals, along each band transect, were counted and identified to species level. Additionally, all diseases and recent mortality that were still identifiable on each colony also were recorded. The incidence of colonies affected by WPD-II ranged from 12.8 to 33% among transects, where thirteen species of scleractinian corals showed several degrees of mortality. The species most affected were Montastraea annularis (39.13%), M. faveolata (26.67%), M. franksi (9.86%), Stephanocoenia intersepta (7.25%), Colpophyllia natans (6.96%), Diploria labyrinthiformis (2.99%), Mycetophyllia aliciae (2.03%), M. cavernosa (1.74%), and D. strigosa (1.45%). WPD-II was more common in the deeper strata (9-9.5 m), where 63% of the surveyed colonies were affected, although the disease was present along the entire reef. Presently, it is imperative to determine how fast the disease is spreading across the reef, how the disease spreads across the affected colonies and what the long-term effects on the reef will be.  相似文献   

3.
 The distribution and abundance of soft coral genera on reefs of the central Great Barrier Reef was investigated in relation to reef position, recent history of disturbance, wave exposure, substratum slope and depth. Eighty-five 25 m long transects were surveyed at 10 m depth on windward sides of 14 mid- and outer-shelf reefs. A further 75 transects in different zones on one mid-shelf reef (Davies Reef) between 5 and 30 m depth were investigated. The crown-of-thorns starfish Acanthaster planci had caused large-scale mortality of scleractinians on eight of these reefs five to ten years prior to the study, and as a result, scleractinian cover was only 35–55% of that on the six unimpacted reefs. On the impacted reefs, stony corals with massive and encrusting growths form had smaller average colony diameters but similar or slightly lower numerical abundance. In contrast, mean colony size, cover and abundance of branching stony corals showed no difference between impacted and unimpacted reefs. Twenty-four genera of soft corals (in eight families) were recorded, and none showed different abundance or cover in areas of former A. planci impact, compared to unaffected sites. Similarly, no difference was detected among locations in the numbers or area cover of sponges, tunicates, zoanthids, Halimeda or other macro-algae. Mean soft coral cover was 2 to 5% at 10 m on sheltered mid-shelf reefs, and 12 to 17% on more current-exposed reefs. Highest cover and abundances generally occurred on platforms of outer-shelf reefs exposed to relatively strong currents but low wave energy. On Davies Reef, cover and colony numbers of the families Nephtheidae and Xeniidae were low within the zone of wave impact, in flow-protected bays and lagoons, on shaded steep slopes, and at depths above 10 and below 25 m. In contrast, distributions of genera of the family Alcyoniidae were not related to these physical parameters. The physical conditions of a large proportion of habitats appear “sub-optimal” for the fastest growing taxa, possibly preventing an invasion of the cleared space. Thus, in the absence of additional stress these shallow-water fore-reef zones appear sufficiently resilient to return to their pre-outbreak state of scleractinian dominance. Accepted: 20 August 1996  相似文献   

4.
Monitoring of coral reefs in the U.S. Virgin Islands through repeated sampling of linear transects revealed that Hurricane David (August 1979) caused significant changes in the amounts of live and dead hard coral cover on these reefs, i.e., cover by scleractinians and the hydrozoan Millepora. Mean percent cover of the most abundant coral species, spatial indices (a measure of bottom topographical complexity), the number of species within transects, the diversity index (H'), and the evenness (J'), did not, however, change significantly as a result of this storm. Mortality in corals did not appear to be species specific. Monitoring of established transects proved to be an effective way of quantifying storm damage. With the increasing interest in management of coral reefs, this technique could also be useful for assessing other types of reef destruction.  相似文献   

5.
Three methods of evaluating stony coral communities were used on selected reefs in the Exuma Cays Land and Sea Park (24°22N, 77°30W) in the central Bahamas. Shallow reefs (< 4 meters depth) were selected from aerial surveys based on size, location, and physical setting, and grouped into three community types: (1) channel patch reefs, (2) soft-coral-sponge patch reefs and (3) fringing reefs. Three survey techniques used to evaluate the stony coral communities were a) species presence and absence lists, b) linear percentage and c) line transects using 1 mx1 m grids. Data collected from these survey methods was used to calculate coral colony density, species area coverage, and species diversity based on colony number and based on linear (cm) coral cover. The linear percentage sampling was considered too convervative in determining distribution patterns of a reef community; this technique takes into account the massive reef framework species such asM. annularis. The line transect technique can account for both colony number and area coverage, thus is a better method for characterizing reef communities. Sample size considerations are discussed for future applications of survey techniques for ground-truthing digital images of small, shallow reef communities.  相似文献   

6.
In order to evaluate if snorkeling had significant effects on coral community structure, three different coral reefs (Madrizquí, Pelona de Rabusquí and Crasquí) located at Archipelago Los Roques National Park, Venezuela, were surveyed. For each site, the coral community structure of two different areas, one subjected to intense snorkeling use (FB) and other not frequently used (PFB), were compared. Community structure was determined with 1 m2-quadrants and 20 m-long transects. These communities were described in terms of species richness, diversity (Shannon-Wiener) and evenness indexes, live and dead coral cover and cover of other organisms (sponges, octocorals and algae). Comparisons within sites were performed with a Kruskall-Wallis test. A total of 24 species of scleractinian corals were found. Live coral cover ranged from 29.9% +/- 26.43 (Crasquí) to 34.55% +/- 6.43 (Madrizquí), while dead coral cover ranged from 32.51% +/- 2.86 (Madrizquí) to 60.78% +/- 21.3 (Pelona de Rabusquí). The PFB areas showed higher live coral cover compared to FB areas; however, significant differences were only found in Crasquí and Pelona de Rabusquí (p < 0.05). Species richness, diversity and evenness were variable and no trends were observed between FB and PFB areas. The frequency of both damaged and diseased colonies were low (< 1%), most damages observed were natural (parrotfish predation). Damages caused by divers such as fin impacts, were not found at the reefs studied. These results suggest that, currently, diving pressure is not as high to cause massive loses of live coral cover in these reefs. However, the lack of strict controls for these activities might produce long-term changes in the structure of these coral communities.  相似文献   

7.
Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.  相似文献   

8.
 Coral reef communities of the western Atlantic have changed over the past two to three decades, but the magnitude and causes of this change remain controversial. Part of the problem is that small-scale patterns observed on individual reefs have been erroneously extrapolated to landscape and geographic scales. Understanding how reef coral assemblages vary through space is an essential prerequisite to devising sampling strategies to track the dynamics of coral reefs through time. In this paper we quantify variation in the cover of hard corals in spur-and-groove habitats (13–19 m depth) at spatial scales spanning five orders of magnitude along the Florida Reef Tract. A videographic sampling program was conducted to estimate variances in coral cover at the following hierarchical levels and corresponding spatial scales: (1) among transects within sites (0.01- to 0.1-km scale), (2) among sites within reefs (0.5- to 2-km scale), (3) among reefs within sectors of the reef tract (10- to 20-km scale), and (4) among sectors of the reef tract (50- to 100-km scale). Coral cover displayed low variability among transects within sites and among sites within reefs. This means that transects from a site adequately represented the variability of the spur-and-groove habitat of the reef as a whole. Variability among reefs within sectors was highly significant, compared with marginally significant variability among sectors. Estimates from an individual reef, therefore, did not adequately characterize nearby reefs, nor did those estimates sufficiently represent variability at the scale of the sector. The structure and composition of coral reef communities is probably determined by the interaction of multiple forcing functions operating on a variety of scales. Hierarchical analyses of coral assemblages from other geographic locations have detected high variability at scales different from those in the present study. A multiscale analysis should, therefore, precede any management decisions regarding large reef systems such as the Florida Reef Tract. Accepted: 19 July 1999  相似文献   

9.
Coral reefs are facing a biodiversity crisis due to increasing human impacts, consequently, one third of reef-building corals have an elevated risk of extinction. Logistic challenges prevent broad-scale species-level monitoring of hard corals; hence it has become critical that effective proxy indicators of species richness are established. This study tests how accurately three potential proxy indicators (generic richness on belt transects, generic richness on point-intercept transects and percent live hard coral cover on point-intercept transects) predict coral species richness at three different locations and two analytical scales. Generic richness (measured on a belt transect) was found to be the most effective predictor variable, with significant positive linear relationships across locations and scales. Percent live hard coral cover consistently performed poorly as an indicator of coral species richness. This study advances the practical framework for optimizing coral reef monitoring programs and empirically demonstrates that generic richness offers an effective way to predict coral species richness with a moderate level of precision. While the accuracy of species richness estimates will decrease in communities dominated by species-rich genera (e.g. Acropora), generic richness provides a useful measure of phylogenetic diversity and incorporating this metric into monitoring programs will increase the likelihood that changes in coral species diversity can be detected.  相似文献   

10.
Documenting successional dynamics of coral communities following large-scale bleaching events is necessary to predict coral population responses to global climate change. In 1998, high sea surface temperatures and low cloud cover in the western Pacific Ocean caused high coral mortality on the outer exposed reefs of Palau (Micronesia), while coral mortality in sheltered bays was low. Recovery was examined from 2001 to 2005 at 13 sites stratified by habitat (outer reefs, patch reefs and bays) and depth (3 and 10 m). Two hypotheses were tested: (1) rates of change of coral cover vary in accordance with habitat, and (2) recovery rates depend on recruitment. Coral cover increased most in the sheltered bays, despite a low recruitment rate, suggesting that recovery in bays was primarily a consequence of remnant regrowth. Recruitment densities were consistently high on the wave-exposed reefs, particularly the western slopes, where recovery was attributed to both recruitment and regrowth of remnants. Recovery was initially more rapid at 10 m than 3 m on outer reefs, but in 2004, recovery rates were similar at both depths. Rapid recovery was possible because Palau’s coral reefs were buffered by remnant survival and recruitment from the less impacted habitats.  相似文献   

11.
Levels of coral cover and abundance on a coral reef flat in Eilat (Israeli Red Sea) were estimated in 2001 by surveying nineteen 10-m transects, and compared to the levels reported in the same area between 1966 and 1973. Lower values compared to 1966 levels are evident, and there has been only a modest recovery following a catastrophic low tide that killed a large proportion of the corals in 1970. Percent cover of soft and stony corals (16.1%) was less than half of that reported for 1969 (35%), when a sharp decrease in coral abundance had already been observed. The total number of soft and stony coral colonies observed was 300, compared to 541 in 1966. In contrast to 1966, when half of the transects surveyed contained more than 30 coral colonies, no transects with this number of corals were observed. The cover of seven of the most common stony coral species was 841 cm, which is twice the coral cover of that in 1973, but only 22% of the 1969 level. Millepora dichotoma, an abundant species before 1970, has almost disappeared, and the soft coral Litophyton, abundant in 1972, was not observed. Anthropogenic nutrient enrichment is apparently among the causes for the lack of coral recovery in the studied reef flat. Reefs located further away from sources of pollution have recovered quickly after natural and anthropogenic disturbances and have retained their coral abundance and diversity.  相似文献   

12.
We examined coral reef communities at 11 sites within Mafia Island Marine Park using a point count method for substrate and visually censused belt transects for fish populations. Multivariate ordinations showed that the benthic habitat differed among reefs. The patterns were mainly attributed to variations in depth, hydrodynamics and benthic composition. In total, the substratum was dominated by dead coral (49%) and algae (25%), with a live coral cover of only 14%. Three hundred and ninety-four fish species belonging to 56 families were recorded. According to MDS-ordinations and RELATE procedures, fish assemblage composition varied among sites in concordance with the habitats provided. Sites with highest proportion of dead coral exhibited highest degree of dispersion in the multivariate ordinations of fish assemblages. Stepwise multiple regression was used to determine the proportion of variance among sites which could be explained by depth, exposure, rugosity, substrate diversity, branching substrate, live coral cover, dead coral cover and different types of algae. The results showed that habitat variables explained up to 92% of the variation in species numbers and in total, and taxon-specific, abundance. Live coral cover was the foremost predictor of both numerical and species abundance, as well as of corallivores, invertivores, planktivores and of the families Pomacentridae, Chaetodontidae and Pomacanthidae. Our results suggest that habitat characteristics play a dominant role in determining fish assemblage composition on coral reefs.  相似文献   

13.
The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.  相似文献   

14.
Coral reef status was surveyed in three south Pacific coral reefs of Costa Rica, one in Ca?o Island and two in Golfo Dulce, and the density, richness and distribution of non-colonial macro borers (> 1 mm) was determined in dead and live coral fragments from these reefs. Based upon traditional indicators of degradation such as high particulate suspended matter and low live coral cover, the reefs at Ca?o Island are in better condition than those at Golfo Dulce. Reef degradation in Golfo Dulce is mainly due to high loads of terrestrial sediments as a consequence of watersheds deforestation. In this study, 36 coral boring species are reported for the eastern Pacific. At the family level, there is high endemism (10%) and greater affinity with the Indo-Pacific (34%), as compared with the eastern Atlantic and Mediterranean (29%) and western Atlantic and Caribbean (27%). The dominant non-colonial macro boring families at the study reefs are mytilid bivalves, eunicid polychaetes and aspidosiphonid sipunculans, with the bivalves considered the main internal bioeroders due to their greater body size and abundances. The level of mortality of the coral colonies and the general level of reef degradation influenced the composition of non-colonial macro-borers. Diversity and total macro-borer density, especially aspidosiphonid density, is higher in corals with greates dead than live cover. In the healthiest coral colonies (less than 50% of partial mortality), mytilids domination, macro-borer diversity and total density, is higher in Golfo Dulce, where reefs are more degraded. In the most affected coral colonies (more than 50% dead), macro-borers total density, especially aspidosiphonids density, is higher, of the healthiest reef of this study, Platanillo. Bivalve relative abundance increases and sipunculan relative abundance decreases with increasing site degradation. In conclusion bioeroder variables can also be used as reef health indicators.  相似文献   

15.
While coral reefs in many parts of the world are in decline as a direct consequence of human pressures, Australia’s Great Barrier Reef (GBR) is unusual in that direct human pressures are low and the entire system of ~2,900 reefs has been managed as a marine park since the 1980s. In spite of these advantages, standard annual surveys of a large number of reefs showed that from 1986 to 2004, average live coral cover across the GBR declined from 28 to 22%. This overall decline was mainly due to large losses in six (21%) of 29 subregions. Declines in live coral cover on reefs in two inshore subregions coincided with thermal bleaching in 1998, while declines in four mid-self subregions were due to outbreaks of predatory starfish. Otherwise, living coral cover increased in one subregion (3%) and 22 subregions (76%) showed no substantial change. Reefs in the great majority of subregions showed cycles of decline and recovery over the survey period, but with little synchrony among subregions. Two previous studies examined long-term changes in live coral cover on GBR reefs using meta-analyses including historical data from before the mid-1980s. Both found greater rates of loss of coral and recorded a marked decrease in living coral cover on the GBR in 1986, coinciding exactly with the start of large-scale monitoring. We argue that much of the apparent long-term decrease results from combining data from selective, sparse, small-scale studies before 1986 with data from both small-scale studies and large-scale monitoring surveys after that date. The GBR has clearly been changed by human activities and live coral cover has declined overall, but losses of coral in the past 40–50 years have probably been overestimated.  相似文献   

16.
Fecundity and abundance of Acropora palifera and the abundance of other scleractinians were compared at two reefs in the Huon Gulf, Papua New Guinea. While temperature and salinity were similar at both reefs, turbidity and sedimentation were higher on one of the reefs. A negative correlation was found between fecundity of A. palifera and three factors: depth, turbidity and sedimentation rate. There was also a negative correlation between coral cover and water transparency and sedimentation. The results suggest that high rates of sedimentation and low transparency depress fecundity of A. palifera, and limit the depth distribution and reduce the abundance of this species and other scleractinians. Lower fecundity in February and March was correlated with higher water temperatures. It is suggested that coral reproduction can be used as a biological indicator of stress on coral reefs.  相似文献   

17.
The coral reefs, seagrasses and mangroves from the Costa Rican Caribbean coast have been monitored since 1999 using the CARICOMP protocol. Live coral cover at Meager Shoal reef bank (7 to 10 m depth) at the Parque Nacional Cahuita (National Park), increased from 13.3% in 1999, to 28.2% in 2003, but decreased during the next 5 years to around 17.5%. Algal cover increased significantly since 2003 from 36.6% to 61.3% in 2008. The density of Diadema antillarum oscillated between 2 and 7ind/m2, while Echinometra viridis decreased significantly from 20 to 0.6ind/m2. Compared to other CARICOMP sites, live coral cover, fish diversity and density, and sea urchin density were low, and algal cover was intermediate. The seagrass site, also in the Parque Nacional Cahuita, is dominated by Thalassia testudinum and showed an intermediate productivity (2.7 +/- 1.15 g/m2/d) and biomass (822.8 +/- 391.84 g/m2) compared to other CARICOMP sites. Coral reefs and seagrasses at the Parque Nacional Cahuita continue to be impacted by high sediment loads from terrestrial origin. The mangrove forest at Gandoca, within the Refugio Nacional de Vida Silvestre Gandoca-Manzanillo (National Wildlife Refuge), surrounds a lagoon and it is dominated by the red mangrove, Rhizophora mangle. Productivity and flower production peak was in July. Biomass (14 kg/m2) and density (9.0 +/- 0.58 trees/100 m2) in Gandoca were relatively low compared to other CARICOMP sites, while productivity in July in Costa Rica (4 g/m2/d) was intermediate, similar to most CARICOMP sites. This mangrove is expanding and has low human impact thus far. Management actions should be taken to protect and preserve these important coastal ecosystems.  相似文献   

18.
Partial mortality or tissue necrosis was quantified in the massive scleractinian coral Porites at three sites in The Philippines (Bolinao, NW Luzon; Puerto Galera, Mindoro; and El Nido, N Palawan). Overall, 15 ± 1 (mean ± 1 standard error, 642 replicates) percent of colony area was dead, mean colony area was 1135 plusmn; 127 cm2, and lesion density was 1.7 ± 0.1 dm—2. Total live coral cover varied between 20 and 63% in belt transects, and Porites and Acropora cover were inversely correlated. ANOVA models incorporating effects of site, colony size, sedimentation rates, wave exposure and depth were highly significant but explained only a small proportion of the variation observed in lesion density and percent dead area (respectively 8 and 2%). Lesion density was found to vary significantly with site (contributed 29% to this explained variance), decrease with increasing colony area (33%), and increase with increasing sedimentation (23%) and wave exposure (14%). Colony size was significantly explained by the factor site (contributing 61% to the total 29% explained variance) and depth (34%), with the smallest colonies being observed in Bolinao and the largest in El Nido. Densities of lesions were highest in Bolinao, intermediate in Puerto Galera, and lowest in El Nido. This pattern is parallel to intensity of human reef exploitation and opposite to that in colony size, live coral cover and Acropora cover. Since only a small part of the observed variance in partial mortality estimators was explained by the ANOVAs, other factors not quantified here must have been more important (e.g. disease incidence, predation, human exploitation).  相似文献   

19.
Over the past decades numerous studies have reported declines in stony corals and, in many cases, phase shifts to fleshy macroalgae. However, long-term studies documenting changes in other benthic reef organisms are scarce. Here, we studied changes in cover of corals, algal turfs, benthic cyanobacterial mats, macroalgae, sponges and crustose coralline algae at four reef sites of the Caribbean islands of Curaçao and Bonaire over a time span of 40 yr. Permanent 9 m2 quadrats at 10, 20, 30 and 40 m depth were photographed at 3- to 6-yr intervals from 1973 to 2013. The temporal and spatial dynamics in the six dominant benthic groups were assessed based on image point-analysis. Our results show consistent patterns of benthic community change with a decrease in the cover of calcifying organisms across all sites and depths from 32.6 (1973) to 9.2% (2013) for corals and from 6.4 to 1% for crustose coralline algae. Initially, coral cover was replaced by algal turfs increasing from 24.5 (1973) to 38% around the early 1990s. Fleshy macroalgae, still absent in 1973, also proliferated covering 12% of the substratum approximately 20 yr later. However, these new dominants largely declined in abundance from 2002 to 2013 (11 and 2%, respectively), marking the rise of benthic cyanobacterial mats. Cyanobacterial mats became the most dominant benthic component increasing from a mere 7.1 (2002) to 22.2% (2013). The observed increase was paralleled by a small but significant increase in sponge cover (0.5 to 2.3%). Strikingly, this pattern of degradation and phase change occurred over the reef slope down to mesophotic depths of 40 m. These findings suggest that reefs dominated by algae may be less stable than previously thought and that the next phase may be the dominance of slimy cyanobacterial mats with some sponges.  相似文献   

20.
Coral reefs are thought to be in worldwide decline but available data are practically limited to reefs shallower than 25 m. Zooxanthellate coral communities in deep reefs (30–40 m) are relatively unstudied. Our question is: what is happening in deep reefs in terms of coral cover and coral mortality? We compare changes in species composition, coral mortality, and coral cover at Caribbean (Curacao and Bonaire) deep (30–40 m) and shallow reefs (10–20 m) using long-term (1973–2002) data from permanent photo quadrats. About 20 zooxanthellate coral species are common in the deep-reef communities, dominated by Agaricia sp., with coral cover up to 60%. In contrast with shallow reefs, there is no decrease in coral cover or number of coral colonies in deep reefs over the last 30 years. In deep reefs, non-agaricid species are decreasing but agaricid domination will be interrupted by natural catastrophic mortality such as deep coral bleaching and storms. Temperature is a vastly fluctuating variable in the deep-reef environment with extremely low temperatures possibly related to deep-reef bleaching. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号