首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous publications showed that a covalently closed circular (CCC) Rts1 plasmid deoxyribonucleic acid (DNA) that confers kanamycin resistance upon the host bacteria inhibits host growth at 42 degrees C but not at 32 degrees C. At 42 degrees C, the CCC Rts1 DNA is not formed, and cells without plasmids emerge. To investigate the possible role of cyclic adenosine 3',5'-monophosphate (cAMP) in the action of Rts1 on host bacteria, Rts1 was placed in an Escherichia coli mutant (CA7902) that lacks adenylate cyclase or in E. coli PP47 (a mutant lacking cAMP receptor protein). Rts1 did not exert the thermosensitive effect on these cells, and CCC Rts1 DNA was formed even at 42 degrees C. Upon addition of cAMP to E. coli CA7902(Rts1), cell growth and formation of CCC Rts1 DNA were inhibited at 42 degrees C. The addition of cAMP to E. coli PP47(Rts1) did not cause inhibitory effects on either cell growth or CCC Rts1 DNA formation at 42 degrees C. The inhibitory effect of cAMP on E. coli CA7902(Rts1) is specific to this cyclic nucleotide, and other cyclic nucleotides such as cyclic guanosine 3',5'-monophosphate did not have the effect. For this inhibitory effect, cells have to be preincubated with cAMP; the presence of cAMP at the time of CCC Rts1 DNA formation is not enough for the inhibitory effect. If the cells are preincubated with cAMP, one can remove cAMP during the [(3)H]thymidine pulse and still observe its inhibitory effect on the formation of CCC Rts1 DNA. The presence of chloramphenicol during this preincubation period abolished the inhibitory effect of cAMP. These observations suggest that cAMP is necessary to induce synthesis of a protein that inhibits CCC Rts1 DNA formation and cell growth at 42 degrees C.  相似文献   

2.
Replication of the R Factor Rts1 in Proteus mirabilis   总被引:19,自引:16,他引:3       下载免费PDF全文
The replication of the R factor Rts1 in Proteus mirabilis was examined by using the technique of CsCl density-gradient centrifugation. The proportion of Rts1 deoxyribonucleic acid (DNA) relative to the host chromosomal DNA (% R-DNA) was 7% in both exponential and stationary growth phases in Penassay Broth and supplemented M9 minimal medium at 30 C. The chromosomal DNA content per cell varied over a threefold range in the different growth media. In agreement with previous genetic observations, the replication of Rts1 was found to be temperature-sensitive and Rts1 DNA was diluted from the cells during exponential growth at 42 C. (14)N-(15)N medium transfer experiments have shown that individual copies of Rts1 are selected at random for replication during the duplication of the multicopy episome pool.  相似文献   

3.
The ability of 13 Erwinia strains to accept, to inherit and to transmit the Rts1 factor by conjugation was studied. 11 strains accepted the Rts1 factor from Escherichia coli K-12 CSH-2 with the frequency of about 10(-7)--10(-3). The Rts1 factor was genetically stable in the Erwinia cells and was not eliminated by acriflavine and under the temperature of 37 and 42 degrees C. All the R+ exconjugants were characterized with more high degree of the resistance of kanamycin than E. coli cells harbouring the same R factor. Erwinia strains harbouring the Rts1 plasmid transferred it by conjugation into homologic (Erwinia) and heterologic (E. coli) bacteria. The study of kinetics of the transfer of the Rts1 factor in different mating systems showed that the transfer of this plasmid from R+ Erwinia into R- Erwinia and R- E. coli--in the liquid medium. It is concluded that Erwinia can be the host and the donor of the Rts1 factor.  相似文献   

4.
Replication of the thermosensitive drug resistance factor Rts1 was studied at the nonpermissive temperature (42 degrees C). It was concluded from the following observations that replication of this plasmid takes place at 42 degrees C without involving the covalently closed circular (CCC) form of deoxyribonucleic acid (DNA). (i) DNA-DNA- reassociation kinetics studies with purified Rts1 DNA showed that Rts1 DNA increased several-fold during cell growth at 42 degrees C while very little, if any, CCC DNA was synthesized. (ii) When Escherichia coli 20S0(Rts1) was labeled with [3H]thymidine at 42 degrees C, a significant amount of radioactive DNA hybridizable to Rts1 DNA was formed. This DNA was found in a fraction where DNA other than CCC DNA was expected in alkaline sucrose density gradient centrifugation analysis. When E. coli 20S0(Rts1) was labeled at 32 degrees C, the labeled CCC DNA did not disappear during a chase period at 42 degrees C. This indicates that preformed CCC DNA does not participate in replication at the nonpermissive temperature. These results are consistent with the hypothesis that there are two modes of replication of Rts1 DNA, one involving a CCC molecule and the other not involving this form, and that only the latter mode takes place at the nonpermissive temperature.  相似文献   

5.
A laboratory-induced mutant with heat-sensitive development of the phagocytotic organelle has been isolated in Tetrahymena pyriformis, syngen 1; the mutant cells form food vacuoles at 30 °C, but not after incubation at 37 °C. Mutant cells transferred to 37 °C undergo a maximum of 3–5 doublings, but a sizeable fraction remains viable for several days. Results of temperature shift-up experiments reveal that an oral apparatus (OA) constructed at 30 °C remains functional at 37 °C, while one constructed at 37 °C is non-functional with regard to phagocytosis. Preliminary cytological observations reveal severe structural abnormalities of the OA. Thus the mutant appears to be primarily affected in the morphogenesis of the OA. The phenotypic effect of the mutation is reversible by a temperature shiftdown. Changes in phenotype caused by temperature shifts in either direction can occur even in stationary or starved cultures. Cell division is not required for the resumption of phagocytosis after a temperature shiftdown. Null-formers obtained at the first doubling after a temperature shift-up can divide at least once more, indicating that a functional OA is not required for cell division at any stage of the cell cycle. Mutants defective in phagocytosis may prove useful in gaining deeper understanding of this mechanism and its relationship to other cellular processes.  相似文献   

6.
The effect of inhibition of protein synthesis on the replication of the R factor Rts1 in Proteus mirabilis was examined by using the technique of CsCl density gradient centrifugation. Only 12% of the copies of Rts1 were found to replicate during amino acid starvation, whereas there was a 30% increase in the amount of P. mirabilis chromosomal deoxyribonucleic acid (DNA) during the same period. Essentially the same amount of Rts1 and host chromosome replication was observed when chloramphenicol was used to inhibit protein synthesis. The replication of Rts1 DNA was also examined in experiments in which cultures were starved for amino acids in (14)N-labeled medium and then transferred to (15)N-labeled medium containing the required amino acids. These experiments showed that Rts1 replication took place throughout the first generation in (15)N-labeled medium and that each copy of Rts1 was replicated one time during the first generation of chromosomal DNA synthesis in (15)N-medium.  相似文献   

7.
N Raghavan  M Ishaq    A Kaji 《Journal of virology》1980,35(2):551-554
Rts1 is a plasmid which confers upon the host bacteria the capacity to restrict T4 bacteriophage growth at 32 degrees C but not at 42 degrees C. Pulse-labeling of phage-infected cells showed that Rts1 restricts the synthesis of T1 DNA. Despite efficient restriction of T4 phage growth and DNA synthesis, infected Escherichia coli 20SO harboring Rts1 synthesized both early and late T4 phage RNA. Synthesis of early T4 phage RNA under restrictive conditions (32 degrees C) was almost equal to that found under nonrestrictive conditions, and a lesser, but significant, amount of late T4 phage RNA was made in almost complete absence of T4 DNA synthesis. Moreover, very little, if any, T4 phage-coded lysozyme was detected in the infected E. coli 20SO/Rts1 at 32 degrees C, whereas normal amounts of lysozyme were present at 42 degrees C.  相似文献   

8.
Carbon-starved cultures of strain Ant-300, a psychrophilic marine vibrio isolated from the Antarctic Convergence, were compared with their nonstarved counterparts for resistance to heat. Specifically, starved and unstarved cells were exposed to 17°C, which is 4°C above the maximum growth temperature, and compared with cells maintained at the optimum temperature (5 to 7°C). Total cell counts, direct viable-cell counts, and plate counts were monitored. At a temperature of 17°C, viability (as indicated by plate counts) was lost within 40 h, with direct viable-cell counts indicating less than 5% viability at this time. However, when cells were carbon starved for 1 week prior to heat challenge, significant plateability was maintained for more than 6 days; direct viable-cell counts of starved cells maintained at 17°C indicated the presence of viable cells for at least 12 days. Because starvation is the normal physiological state of copiotrophic, heterotrophic bacteria in oligotrophic marine waters, these data suggest that starvation conditions may be a significant factor in providing heat tolerance to psychrophiles.  相似文献   

9.
Morphological changes of Vibrio parahaemolyticus from rods to spheres took place after a culture was subjected to starvation at a wide range of temperatures. Scanning electron micrographs revealed that starved spherical cells gradually developed a rippled cell surface with blebs and an extracellular filamentous substance adhesive to the cell surface. Cells starved at a low temperature for certain intervals were counted by various bacterial enumeration methods, including plate count, direct viable count, and total cell count for both Kanagawa-positive and -negative strains. The results indicated that this species could reach the nonculturable stage in 50 to approximately 80 days during starvation at 3.5 degrees C. Kanagawa-negative strain 38C6 lost culturability more slowly than Kanagawa-positive strain 38C1 at low temperature. As detected by thiosulfate-citrate-bile salts-sucrose plate count, a high percentage of the surviving cells at 3.5 degrees C in starvation medium were possibly injured by the low temperature rather than by starvation. Both addition of nalidixic acid to the starved cultures and the most-probable-number method demonstrated that the cells recovered after a temperature upshift probably represented the regrowth of a few surviving cells. These surviving cells were capable of growth and multiplication with limited nutrients at an extraordinary rate when the temperature was upshifted.  相似文献   

10.
An R plasmid Rts1 was integrated into the gal region of the chromosome of Escherichia coli XA-7012 (galE) strain by the directed transposition technique. The integration of the Rts1 genome was confirmed mainly by conjugation studies and also by transduction experiments using phage P1. As a result, it was found that the integrated genome contained genes responsible for kanamycin resistance, conjugal transferability, and for autonomous replication. As reported previously, Rts1 is temperature sensitive in replication and inhibits the growth of the host at nonpermissive temperature. However, although a plasmid derived from the integrated Rts1 genome still demonstrates temperature sensitivity upon transfer and high level of kanamycin resistance, this plasmid no longer displays temperature sensitivity in replication and the inhibitory effect on the host. These results indicate that the temperature sensitivity of replication of Rts1 and its inhibitory effect on the host cell are due to the presence of a gene or gene cluster on the Rts1 genome and that the gene(s) is clearly discriminated from the one responsible for the temperature sensitivity of transfer.  相似文献   

11.
The thermosensitive replication of an R plasmid, pJY5, isolated from Enterobacter cloacae, was studied. pJY5 consisted of 61 million daltons of covalently closed circular (CCC) deoxyribonucleic acid (DNA) with a buoyant density of 1.714 g/cm3 (55 mol % guanine plus cytosine). In Escherichia coli, this plasmid replicated stringently at 32 degrees C, but ceased its CCC DNA replication after a short incubation at 42 degrees C, resulting in production of R- segregants. The thermosensitive replication of pJY5 was not overcome by the coexistence of non-thermosensitive R plasmids. The plasmid manifested an inhibitory effect on host bacterial cell growth at 42 degrees C, although the effect was less prominent than that of R plasmids belonging to the T-incompatibility group, Rts1, R401, and R402. When the pJY5 plasmid was transferred into E. cloacae, however, no R- segregants were detected at any culture temperature, even 42 degrees C. Alkaline sucrose gradient analysis revealed that a significant amount of pJY5 CCC DNA was synthesized in E. cloacae at the high temperature but not in E. coli. Furthermore, the growth-inhibitory effect of pJY5 on hosts at 42 degrees C was not observed in E. cloacae. On the other hand, Rts1 and R401 were found to be thermosensitive in E. cloacae as well as in E. coli.  相似文献   

12.
Control of replication and segregation of R plasmid Rts1.   总被引:7,自引:6,他引:1       下载免费PDF全文
A mutant plasmid, pTW2, which was derived from the integrated Rst1 genome in the Escherichia coli chromosome, was studied as to its mode of replication at 30 degrees C. When Proteus mirabilis Pm17 harboring pTW2 was grown in broth at 30 degrees C, a considerable number of R- segregants (approximately 40%) were consistently observed. This indicates that pTW2 is unstable even at the permissive temperature for the replication of Rts1. The pTW2+ cells in a culture were heterogeneous with respect to the level of kanamycin resistance, ranging from 500 to 4,000 mug of the drug per ml. The amount of pTW2 deoxyribonucleic acid (DNA) relative to the Pm17 chromosomal DNA was about fivefold as large as that of Rts1 DNA in an exponentially growing culture. In addition, pTW2 in P. mirabilis continued to replicate after the chromosome had ceased to replicate, which was shown in the study of the inhibition of protein synthesis. Contrary to pTW2, the parent plasmid Rts1 is highly stable, and the relative percent Rts1 DNA is maintained at approximately 7% in any cultural conditions at a permissive temperature. These results suggest that copies of pTW2 may not segregate evenly into the host progeny upon cell division and that the replication of pTW2 does not coordinate with that of the chromosome. A remarkable instability of pTW2 as well as an increase in the relative percent pTW2 DNA was also shown when E. coli were used as the host cells. These results suggest the possibility that there is a gene or a gene cluster on the Rst1 genome responsible for the control of both replication and segregation of Rts1.  相似文献   

13.
Recovery from nutrient starvation by a marine Vibrio sp.   总被引:1,自引:10,他引:1       下载免费PDF全文
P S Amy  C Pauling    R Y Morita 《Applied microbiology》1983,45(5):1685-1690
A marine psychrophilic Vibrio sp., Ant-300, recovered from starvation after the addition of 1 volume of complete nutrient medium to 9 volumes of starvation menstruum. Turbidity (measured by optical density), viable cell counts, cell size (measured from electron micrographs), and cellular concentrations of protein, DNA, and RNA were monitored with recovery time. The usual growth curve of bacterial cultures was observed. On a per viable cell basis, protein, DNA, and RNA increased to maximum values just before cell division and then returned to close to the initial starved-cell value during the stationary phase. Cells under complete starvation conditions or missing only one nutrient in the stationary phase responded with cell division resulting in many smaller cells. The length of the lag phase during recovery was directly proportional to the length of the prior starvation period, even when identical numbers of cells were used for recovery. Cells appeared to pass more deeply into dormancy with starvation time.  相似文献   

14.
Ruminococcus flavefaciens strain C94, a strictly anaerobic, cellulolytic ruminal bacterial species, was grown either in batch or continuous cultures (cellobiose limited or nitrogen limited) at various dilution rates. Washed cell suspensions were incubated anaerobically at 39°C without nutrients for various times up to 24 h. The effects of starvation on direct and viable cell counts, cell composition (DNA, RNA, protein, and carbohydrate), and endogenous production of volatile fatty acids by the cell suspensions were determined. In addition, the effect of the pH of the starvation buffer on direct and viable cell counts was determined. Survival of batch-grown cells during starvation was variable, with an average time for one-half the cells to lose viability (ST50) of 10.9 h. We found with continuous cultures that viable cell counts declined faster when the initial cell suspensions had been grown at faster dilution rates; this effect was more pronounced for suspensions that had been limited by cellobiose (ST50 = 6.6 h at a dilution rate of 0.33 h−1) than for suspensions that had been limited by nitrogen (ST50 = 9.5 h at a dilution rate of 0.33 h−1). With continuous cultures, viable cell counts in all cases declined faster than direct cell counts did. The rates of disappearance of specific cell components during starvation varied with the initial growth conditions, but could not be correlated with the loss of viability. Volatile fatty acid production by starving cells was very low, and acetate was the main product. Starved cells survived longer at pH 7.0 than they did at pH 5.5, and this effect of pH was greater for cellobiose-limited cells (mean ST50 = 7.1 h) than for nitrogen-limited cells (mean ST50 = 12 h). Although it has relatively low ST50 values, R. flavefaciens has sufficient survival abilities to maintain reasonable numbers in domestic animals having maintenance or greater feed intake.  相似文献   

15.
Recovery from nutrient starvation by a marine Vibrio sp   总被引:4,自引:0,他引:4  
A marine psychrophilic Vibrio sp., Ant-300, recovered from starvation after the addition of 1 volume of complete nutrient medium to 9 volumes of starvation menstruum. Turbidity (measured by optical density), viable cell counts, cell size (measured from electron micrographs), and cellular concentrations of protein, DNA, and RNA were monitored with recovery time. The usual growth curve of bacterial cultures was observed. On a per viable cell basis, protein, DNA, and RNA increased to maximum values just before cell division and then returned to close to the initial starved-cell value during the stationary phase. Cells under complete starvation conditions or missing only one nutrient in the stationary phase responded with cell division resulting in many smaller cells. The length of the lag phase during recovery was directly proportional to the length of the prior starvation period, even when identical numbers of cells were used for recovery. Cells appeared to pass more deeply into dormancy with starvation time.  相似文献   

16.
Rts1 is a high-molecular-weight (126 x 10(6)) plasmid encoding resistance to kanamycin. It expresses unusual temperature-sensitive phenotypes, which affect plasmid maintenance and replication, as well as host cell growth. We have cloned the essential replication region of Rts1 from pAK8, a smaller derivative which is phenotypically similar to Rts1. Restriction endonuclease digests of isolated pAK8 deoxyribonucleic acid were allowed to "self-ligate" (ligation without an additional cloning vector) and subsequently were used to transform Escherichia coli strain 20SO to kanamycin resistance. Screening of these strains for the phenotypes of thermosensitive host growth and temperature-dependent plasmid elimination demonstrated that these two properties were expressed independently. Furthermore, it was shown that the Rts1 replication locus per se is not necessarily responsible for altered host growth at the nonpermissive temperature. The kanamycin resistance fragment of pAK8 was also cloned into pBR322. Electrophoretic analysis of BamHI restriction enzyme digests of this plasmid and similar digests of an Rts1 miniplasmid has allowed the identification of an 18.6-megadalton fragment carrying the replication locus and a 14.1-megadalton fragment carrying the kanamycin resistance gene.  相似文献   

17.
An Hfr strain of Escherichia coli K-12 was obtained by integrative suppression with a thermosensitive plasmid, Rts1. The R plasmid was integrated into the chromosome between rif and thr, and transfer of the chromosome occurred counterclockwise. The thermosensitivity of host cell growth due to the dnaA mutation was markedly but not completely reduced in this integratively suppressed Hfr strain. When the dnaA mutation was removed by transducing the dnaA+ genome to this Hfr, the thermosensitivity of cell growth due to existence of Rts1 was suppressed in contrast to strains carrying it autonomously. Thermosensitivity of cell growth appeared again when the plasmid was detached from the chromosome to exist autonomously. Contrary to the effect on cell growth, the transfer of the chromosome and the plasmid itself and the ability to "restrict" T-even phages were still thermosensitive in all of these strains carrying Rts1, irrespective of its state of existence. The detached plasmid as well as the original Rts1 were segregated upon growth at 42 C. These data are discussed in relation to chromosome-plasmid interaction. One of the most important conculusions is that some plasmid genes, related to their replication, are phenotypically suppressed by the chromosome when it is integrated.  相似文献   

18.
The RepA protein of the Rts1 plasmid, consisting of 288 amino acids, is a trans-acting protein essential for replication. A mutant repA gene, repA delta C143, carrying a deletion that removed the 143 C-terminal amino acids of RepA, could transform, but at a low frequency, an Escherichia coli polA strain, JG112, when repA delta C143 was cloned into pBR322 with Rts1 ori in the natural configuration. The transformation was less efficient without the dyad DnaA box in the ori region, and no transformation occurred at 42 degrees C, characteristic of Rts1 replication. A fusion of the 3'-terminal half of repA of the P1 plasmid to repA delta C143 yielded a pBR322 chimeric plasmid that contained Rts1 ori through hybrid (Rts1-P1) repA. This plasmid was maintained much more stably in JG112 at 37 degrees C. At 42 degrees C, however, it was quite unstable. The overproduced hybrid RepA protein showed interference with mini-Rts1 replication in trans and also exhibited an autorepressor function, although both activities were decreased. These findings suggest that the N-terminal half of the RepA molecule of Rts1 is involved in the activation of the replication origin.  相似文献   

19.
Escherichia coli was grown in a defined medium at optimum temperature and then transferred to each of five different starvation regimes at 5°C, 20°C, or 37°C, for 1000 hours. Cells were maintained with growth-limiting amounts of carbon or nitrogen, or without either or both nutrients. Bacterial cell viability was assessed by dilution plating, the reduction of 2(p-indophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT), direct viable counts (DVC), and microcolony development. The recoverability of cells on solid medium declined most rapidly, and to the greatest extent in most cases, in cultures maintained at 37°C. Only nitrogen-starved cells maintained at 5°C became completely nonculturable. The reduction of INT consistently indicated higher numbers of viable cells compared to the other methods in all cultures. The viabilities of carbon- and nitrogen-limited cells, assessed by all methods, were similar to one another at each of the temperatures. Viability was lowest at 37°C. Nutrient-downshifted cells also followed a temperature-dependent pattern of survival with viability lowest at 37°C. Morphological differences were noted at different temperatures but were most obvious for nitrogen-starved cells at 37°C, which increased in length. Correspondence to: R.W. Attwell  相似文献   

20.
When autogamy was induced in competent cells of Paramecium tetraurelia by depriving them of food, the onset of autogamy was preceded by a critical fission which occurred in the starvation medium. When the cells were fed again immediately after the fission, they did not undergo autogamy. However, they did undergo autogamy when they were fed later than 1 hr after the critical fission. The irreversible differentiation for autogamy seems to be at about 1 hr after the critical fission. This procedure thus provides the opportunity to induce autogamy synchronously. The result of macronuclear transplantation demonstrated that autogamy was under the control of macronucleus. Moreover, the clonal age required for autogamy was found to be shortened by repetitive elimination of a part of the macronucleus. The result can be explained by the hypothesis that clonal age is measured in rounds of chromosome replication or DNA synthesis rather than cell divisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号