首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method has been developed for the enzymatic preparation of alpha-(32)P-labeled ribo- and deoxyribonucleoside triphosphates, cyclic [(32)P]AMP, and cyclic [(32)P]GMP of high specific radioactivity and in high yield from (32)Pi. The method also enables the preparation of [gamma-(32)P]ATP, [gamma-(32)P]GTP, [gamma-(32)P]ITP, and [gamma-(32)P]-dATP of very high specific activity and in high yield. The preparation of the various [alpha-(32)P]nucleoside triphosphates relies on the phosphorylation of the respective 3'-nucleoside monophosphates with [gamma-(32)P]ATP by polynucleotide kinase and a subsequent nuclease reaction to form [5'-(32)P]nucleoside monophosphates. The [5'-(32)P]nucleoside monophosphates are then converted enzymatically to the respective triphosphates. All of the reactions leading to the formation of [alpha-(32)P]nucleoside triphosphates are carried out in the same reaction vessel, without intermediate purification steps, by the use of sequential reactions with the respective enzymes. Cyclic [(32)P]AMP and cyclic [(32)P]GMP are also prepared enzymatically from [alpha-(32)P]ATP or [alpha-(32)P]GTP by partially purified preparations of adenylate or guanylate cyclases. With the exception of the cyclases, all enzymes used are commerically available. The specific activity of (32)P-labeled ATP made by this method ranged from 200 to 1000 Ci/mmol for [alpha-(32)P]ATP and from 5800 to 6500 Ci/mmol for [gamma-(32)P]ATP. Minor modifications of the method should permit higher specific activities, especially for the [alpha-(32)P]nucleoside triphosphates. Methods for the use of the [alpha-(32)P]nucleoside phosphates are described for the study of adenylate and guanylate cyclases, cyclic AMP- and cyclic GMP phosphodiesterase, cyclic nucleotide binding proteins, and as precursors for the synthesis of other (32)P-labeled compounds of biological interest. Moreover, the [alpha-(32)P]nucleoside triphosphates prepared by this method should be very useful in studies on nucleic acid structure and metabolism and the [gamma-(32)P]nucleoside triphosphates should be useful in the study of phosphate transfer systems.  相似文献   

2.
An enzymatic method for the synthesis of [beta-32P]ADP from [gamma-32P]ATP is described. This substrate is required for the assay of ADPase and is not commercially available. The method described results in a preparation of [beta-32P]ADP of high purity with a yield of approximately 40% the theoretical obtainable.  相似文献   

3.
It is well known that platelets readily incorporate radioactive glycerol, but not radioactive phosphate into phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in vitro, thus not in accordance with de novo synthesis according to the Kennedy pathway. In attempts to understand the reason for the discrepancy, gel-filtered platelets were incubated simultaneously with [32P]Pi and [3H]glycerol, and the specific and relative radioactivities of products and intermediates were determined. Both precursors were incorporated into phosphatidylinositol (PI) with a 32P/3H ratio similar to that in glycerol 3-phosphate (in accordance with the Kennedy pathway). However, PC and PE obtained a much lower ratio. The specific 32P radioactivity in phosphorylcholine was similar to that of the gamma-phosphoryl of ATP and 650-times higher than that of PC. The specific 32P radioactivity of phosphorylethanolamine was 20-times less than that of phosphorylcholine. Both mass and 32P labelling of CDP-choline were below the detection limits. It is concluded that the incorporation of [32P]Pi into PC via phosphorylcholine is insignificant while the preferential incorporation of [3H]glycerol could be explained by exchange of diacyl[3H]glycerol in the reversible choline phosphotransferase (CDP-choline: 1,2-diacylglycerol cholinephosphotransferase) reaction. The same mechanism would explain the preferential incorporation of 3H over 32P into PE, although dilution of 32P at the phosphorylethanolamine stage would account for part of the feeble 32P incorporation. Although other mechanisms are also possible, our results clearly show that the appearance of [3H]glycerol in PC and PE is not a reliable method of monitoring de novo synthesis of these phospholipids.  相似文献   

4.
We describe a procedure of preparing [32P]phosphotyrosyl histones with minimal contamination by 32P-labeled lipids; the latter was usually found to be mixed with the phosphoproteins when the cell membrane-enriched fraction of A-431 cells was used as a source of tyrosine kinase. The phosphatase activities previously found to be associated with the plasma membranes of a human astrocytoma were resolved using purified [32P]phosphotyrosyl histones and [32P]phosphatidylinositol phosphate. In comparison with the phosphotyrosyl protein phosphatase, the phosphatidylinositol phosphate phosphatase activity is more active over a broad range of pH values, and its activity is inhibited by fluoride, zinc chloride, and lower concentrations of vanadate.  相似文献   

5.
An enzymatic method for [32P]phosphoenolpyruvate synthesis   总被引:7,自引:0,他引:7  
A convenient method for the enzymatic synthesis of [32P]phosphoenolpyruvate from [γ-32P]ATP using partially pufified phosphoenolpyruvate carboxykinase from Escherichia coli is described. The synthesis was shown to convert essentially all the [γ-32P]ATP to [32P]phosphoenolpyruvate, which was subsequently separated from residual [γ-32P]ATP and [32P]Pi by chromatography on AG-1-X8-bicarbonate resin.  相似文献   

6.
The specific activity of the gamma-32P position of ATP was measured in various tissue preparations by two methods. One employed HPLC and the enzymatic conversion of ATP to glucose 6-phosphate and ADP. The other was based on the phosphorylation of histone by catalytic subunit of cAMP-dependent protein kinase (Hawkins, P.T., Michell, R.H. and Kirk, C.J. (1983) Biochem. J. 210, 717-720). The HPLC method also allowed the incorporation of 32P into the (alpha + beta)-positions of ATP to be determined. In rat epididymal fat-pad pieces and fat-cell preparations the specific activity of [gamma-32P]ATP attained a steady-state value after 1-2 h incubation in medium containing 0.2 mM [32P]phosphate. Addition of insulin or the beta-agonist isoprenaline increased this value by 5-10% within 15 min. Under these conditions the steady-state specific activity of [gamma-32P]ATP was 30-40% of the initial specific activity of the medium [32P]phosphate. However, if allowance was made for the change in medium phosphate specific activity during incubations the equilibration of the gamma-phosphate position of ATP with medium phosphate was greater than 80% in both preparations. The change in medium phosphate specific activity was a combination of the expected equilibration of [32P]phosphate with exchangeable intracellular phosphate pools plus the net release of substantial amounts of tissue phosphate. At external phosphate concentrations of less than 0.6 mM the loss of tissue phosphate to the medium was the major factor in the change in medium phosphate specific activity. It is concluded that little advantage is gained in employing external phosphate concentrations of less than 0.6 mM in experiments concerned with the incorporation of phosphate into proteins and other intracellular constituents. Indeed, a low external phosphate concentration may cause depletion of important intracellular phosphorus-containing components.  相似文献   

7.
A rapid and simple enzymic method is described for the synthesis of [32P]phosphoenolpyruvate from [32P]Pi, with a reproducible yield of 74%. The final product was shown to be a good substrate for pyruvate kinase (EC 2.7.1.40).  相似文献   

8.
A simplified method is described for the enzymatic synthesis and purification of [alpha-32P]ribo- and deoxyribonucleoside triphosphates. The products are obtained at greater than 97% radiochemical purity with yields of 50--70% (relative to 32Pi) by a two-step elution from DEAE-Sephadex. All reactions are done in one vessel as there is no need for intermediate product purifications. This method is therefore suitable for the synthesis of these radioactive compounds on a relatively large scale. The sequential steps of the method involve first the synthesis of [gamma-32P]ATP and the subsequent phosphorylation of nucleoside 3' monophosphate with T4 polynucleotide kinase to yield nucleoside 3', [5'-32P]diphosphate. Hexokinase is used after the T4 reaction to remove any remaining [gamma-32P]ATP. Nucleoside 3',[5'-32P]diphosphate is treated with nuclease P-1 to produce the nucleoside [5'-32P]monophosphate which is phosphorylated to the [alpha-32P]nucleoside triphosphate with pyruvate kinase and nucleoside monophosphate kinase. Adenosine triphosphate used as the phosphate donor for [alpha-32P]deoxynucleoside triphosphate syntheses is readily removed in a second purification step involving affinity chromatography on boronate-polyacrylamide. [alpha-32P]Ribonucleoside triphosphates can be similarly purified when deoxyadenosine triphosphate is used as the phosphate donor.  相似文献   

9.
Incubation of blowfly salivary gland homogenates with 30 microM [gamma-32P]ATP resulted in a rapid, Mg2+-dependent, synthesis of [32P]polyphosphoinositides and [32P]phosphatidic acid. 5-Methyltryptamine, in the presence of 10 microM guanosine 5'-(3-O-thio)trisphosphate, reduced the net accumulation of 32P label into phosphatidylinositol-4,5-P2 and phosphatidylinositol-4-P by 35 and 20%, respectively. 5-Methyltryptamine did not affect synthesis of [32P]phosphatidic acid. Phosphorylation of polyphosphoinositides was not affected by 5-methyltryptamine. In membranes labeled in vitro with [gamma-32P]ATP, 5-methyltryptamine stimulated a rapid breakdown of the [32P]polyphosphoinositides. These results indicate that in blowfly salivary gland homogenates, hormone stimulates breakdown of the newly synthesized polyphosphoinositides. In the presence of hormone, the rate of polyphosphoinositide synthesis does not compensate for the rate of polyphosphoinositide degradation.  相似文献   

10.
A method for the synthesis and purification of guanosine 5'-[gamma-S]triphosphate labeled with 32P in the beta-position is described. The first step in the synthesis involves the quantitative transfer of 32Pi from [gamma-32P]dATP to 5'-GMP catalyzed by GMP kinase. Further incubation of the beta-32P]GDP product with [gamma-S]GTP and nucleoside diphosphate kinase results in the synthesis of [beta-32P][gamma-S]GTP with a yield of 10 to 18%. The 32P-labeled [gamma-S]nucleotide is purified by binding to mercury-agarose and eluting with buffer containing beta-mercaptoethanol. Specific incorporation of 32P into the beta-position was demonstrated by treating [beta-32P][gamma-S]GTP with 7% formic acid to remove the gamma-thiophosphate and digesting the remaining [beta-32P]GDP with nucleotide pyro-phosphatase. Although 5'-GMP was released after pyrophosphatase digestion, the only 32P radioactivity detected was as inorganic phosphate.  相似文献   

11.
A simple and rapid method for preparing [32P]adenosine 3'5'-cyclic monophosphate (cAMP) is described. A culture of an Escherichia coli mutant which excretes cAMP about 150 times faster than does a wild-type strain was incubated overnight with [32P]orthophosphate of high specific activity (e.g., 4000 Ci/mol (1 Ci = 37 GBq). The [32P]cAMP which accumulated extracellularly was then purified to 99.9% radiochemical purity in less than 4 h by adsorption to charcoal and alumina column chromatography. A two-dimensional chromatography system using a PEI-cellulose plate is also described which should prove useful for studying cAMP metabolism with 32P- or 3H-labeled cAMP or ATP.  相似文献   

12.
An improved method is described for the rapid and simple preparation of alpha-[32P]dATP and alpha-[32P]ATP from 32Pi in good yields and with specific activities from 20 - 150 Ci/mmol. The two-step procedure involves the chemical synthesis of the mononucleotide followed by its enzymic conversion to the triphosphate with myokinase (EC 2.7.4.3) and pyruvate kinase (EC 2.7.1.40) in the presence of trace amounts of dATP or ATP to prime the reaction. The two steps are carried out in the same reaction flask and the only purification step required is a step-wise elution from a column of DEAE-cellulose.  相似文献   

13.
A series of proteins are covalently labeled when human lymphocytes are incubated with [32P]NAD+. The majority of this labeling is effectively inhibited when the lymphocytes are coincubated with 3-aminobenzamide, a potent inhibitor of poly(ADP-ribose) polymerase. However, labeling of a 72 000 molecular weight protein was resistant to the inhibitory effect of 3-aminobenzamide. Labeling of this protein from [32P]NAD+ was shown to be Mg2+-dependent. The 72 000 molecular weight protein could also be labeled on incubation with [alpha-32P]ATP, [gamma-32P]ATP and [32P]orthophosphate, but not from [3H]NAD+ or [14C]NAD+. In the present study, we show that the 72 000 molecular weight protein is not ADP-ribosylated but rather, phosphorylated on incubation with [32P]NAD+. This phosphorylation appears to occur via an Mg2+-dependent conversion of NAD+ to AMP with the eventual utilization of the alpha-phosphate for phosphorylation of the 72 000 molecular weight protein.  相似文献   

14.
We developed a novel chemical synthesis of thiamine triphosphate which allows us to incorporate 32P in the gamma position. The reaction is based on the condensation of [32P]orthophosphoric acid and thiamine diphosphate in the presence of ethyl chloroformate. After purification by two ion-exchange purification steps, the thiamine derivative has a specific radioactivity of 10 Ci/mmol. The average final yield synthesis is about 10%.  相似文献   

15.
1. The rat-liver cell-sap material from which 3-[32P]phosphohistidine was previously isolated after incubation with [gamma-32P]ATP and alkaline hydrolysis, was shown to increase about 6-fold on a high-carbohydrate diet. This increase in 32P labelling corresponded to the increase in ATP citrate lyase activity of livers of rats fed on a high-carbohydrate diet, as reported by others. 2. ATP citrate lyase [ATP:citrate oxaloacetate-lyase (CoA-acetylating and ATP-dephopshorylating), EC 4.1.3.8] was purified from rat liver essentially according to the method of Plowman and Cleland (J. Biol. Chem., 242 (1967) 4239). The purified enzyme was incubated for a short time at 0 degree with [gamma-32P]ATP in the presence of 20 mM magnesium acetate. The phosphorylated protein was hydrolysed in alkali and the main part of the radioactivity was identified as 3-[32P]phosphohistidine. The identity of the phosphorylated amino acid was established by Dowex-1 chromatography, paper electrophoresis, paper chromatography and by analysis of the stability to acid. 3. It is concluded from these and previous results from this laboratory that ATP citrate lyase and nucleoside diphosphate kinase (ATP:nucleoside diphosphate phosphotransferase, EC 2.7.4.6) account for most of the normal rat-liver cell-sap protein which is rapidly phosphorylated by ATP.  相似文献   

16.
A new chemical method for the synthesis of adenosine 5'-gamma-[32P] triphosphate has been developed based on the reaction of adenosine 5'-diphosphate with ethyl chloroformate. The resulting active mixed anhydride was able to react with [32P]-triethylammonium orthophosphate to give gamma-[32P]ATP.  相似文献   

17.
In rat uterine mince incubated in vitro [3H]inositol was found to be incorporated into phosphatidylinositol (PI) predominantly via a pathway which could be markedly and dose dependently activated with Mn2+ (0.1-10 mM) and inhibited by Ca2+ (1-10 mM). These ions had no effect on the incorporation of [32P]phosphate (32P) into PI indicating a distinct inositol-exchange mechanism for the labeling of PI with [3H]inositol. Treatment of ovariectomized rats for 5 days with 2 micrograms estradiol dipropionate (EDP) increased about 3-fold (when measured in the presence of 1 mM Mn2+) and 4-5-fold (when measured in the presence of 1 mM Ca2+) the inositol-exchange activity in the rat uterus, and these effects were suppressed by 40 and 30% respectively by the concomitant administration of 2 mg progesterone (P). EDP alone or in combination with P increased to the same extent (by a factor of 2-3) the rate of labeling with 32P of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and plasmenylethanolamine (PmE). The labeling rate of PI was increased 1.5-1.7-fold by treatment with EDP and this increase was selectively augmented further to about 2.5-fold by the simultaneous administration of P. Treatment with P alone had no significant effect on the incorporation of either labeled precursor. Steroid hormone treatments had no effect on the amount of these phospholipids in 100 mg uterine tissue, but they increased about 1.7-fold the rate of labeling of ATP with 32P. We conclude that P, when administered together with estradiol, regulates differentially the turnover of the inositol and phosphate moieties of PI with possible physiological consequences.  相似文献   

18.
A simple, rapid and inexpensive method is described for the enzymic synthesis of [alpha-32P]ATP from [32P]Pi on a preparative scale with an overall yield of 53%. The final product contained all of the detectable radioactivity (less than 99.9%) in the alpha position and has been shown to behave identically with commerically availabe [alpha-32P]ATP during the synthesis of 3':5'-cyclic AMP in the reaction catalysed by adenylate cyclase.  相似文献   

19.
We found 8-azidoadenosine 5'-diphosphate to be a phosphoryl acceptor in the enzymatic conversion of 1,3-diphosphoglyceric acid to 3-phosphoglycerate. This has allowed us to synthesize in a single-step procedure carrier-free 8-azidoadenosine 5'-[gamma-32P]triphosphate, requiring no further purification of the end product. The synthesized 8-azidoadenosine 5'-[gamma-32P]triphosphate has been characterized and shown to meet all the criteria for a specific photoreactive ATP analogue.  相似文献   

20.
A new method is described for the determination of NAD+ in picomole amounts. An enzymatic coupling system of NAD-pyrophosphorylase and hexokinase is used to convert sodium [32P]pyrophosphate and NAD+ to [32P]ADP, glucose 6-[32P]phosphate, and NMN. The key step in this analysis is the selective adsorption of the reaction product [32P]ADP, onto activated charcoal with a solution of 1m K2HPO4:10% trichloroacetic acid (1:3, v/v, pH 2). The range of concentrations of NAD+ that can be measured is 1–200 pmol. The simplicity of the method allows as many as 180 samples to be assayed in 4–5 h. This procedure has been used to quantitate NAD+ in crude extracts of germinating wheat embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号