首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Essential hypertension is probably caused by combinations of small quantitative changes in the expression of many genes together with environmental factors. In this article, strategies for studying hypertension using animal models are summarized with emphasis on the combined use of mouse models and computer simulations. We have chosen the rennin-angiotensin system as our main example. Future directions of hypertension research using gene targeting are also discussed.  相似文献   

2.
Several candidate genes, chosen from the renin‐ angiotensin system, were examined for their association with essential hypertension. The genes of the renin‐ angiotensin system (RAS) are good candidates for such an approach because this system is well known to be involved in the control of blood pressure. One of these candidate genes is the gene encoding for angiotensinogen (the most important gene of the RAS associated with essential hypertension in the most population, is the gene for angiotensin‐converting enzyme‐ ACE). One DNA polymorphism within exon 2‐ with threonine instead of methionine at position 235 (M235T) was found to be significantly associated with hypertension. The objective of this study is the analysis of M235T polymorphism in angiotensinogen gene in Romanian patients with essential hypertension as well as controls. We examined 38 patients with essential hypertension and 21 normotensive patients. In order to identify the M235T angioteninogen variant, we used the following methods: DNA extraction, PCR amplification and enzymatic digestion of the PCR product using Tth IIII restriction endonuclease enzyme. In the study groups, the M235T variant (Met?Thr in aminoacid position 235) was found more frequently in hypertensive patients (81,57%), than in control subjects (66,66%). We identified 52,63% M235T heterozygotes in the hypertensive group compared with 47,61% in the control group, and 28,94% T235T homozygotes in the hypertensive group compared with 19,04% in the control group. The results of our study suggest an association of the M235T polymorphism in the gene encoding angiotensinogen with essential hypertension  相似文献   

3.
Essential hypertension affects 20 to 30% of the population worldwide and contributes significantly to cardiovascular mortality and morbidity. Heridability of blood pressure is around 15 to 40% but there are also substantial environmental factors affecting blood pressure variability. It is assumed that blood pressure is under the control of a large number of genes each of which has only relatively mild effects. It has therefore been difficult to discover the genes that contribute to blood pressure variation using traditional approaches including candidate gene studies and linkage studies. Animal models of hypertension, particularly in the rat, have led to the discovery of quantitative trait loci harbouring one or several hypertension related genes, but translation of these findings into human essential hypertension remains challenging. Recent development of genotyping technology made large scale genome-wide association studies possible. This approach and the study of monogenic forms of hypertension has led to the discovery of novel and robust candidate genes for human essential hypertension, many of which require functional analysis in experimental models.  相似文献   

4.
High blood pressure is a disease of unknown cause. Family history of the disease indicates higher risk, but it is not known which genes are involved or how they interact with environmental influences to produce the disorder. Molecular biology offers an approach to problems that have not so far been solved by classical physiology or biochemistry. By analysing polymorphic variation in chromosome markers such as minisatellite sequences, or by restriction fragment polymorphism analysis of candidate genes, attempts are being made to link genetic variations with hypertension. In genetically hypertensive rats, hypertension is associated with a polymorphism of the renin gene and with other loci on chromosomes 10 and 18. The role of these loci in human hypertension remains to be determined. Other genes such as sodium-lithium countertransport may be involved. Environmental factors such as stress or salt intake could influence the rate or timing of expression of certain genes and thus result in hypertension.  相似文献   

5.
Multiple factors underlie susceptibility to essential hypertension, including a significant genetic and ethnic component, and environmental effects. Blood pressure response of hypertensive individuals to salt is heterogeneous, but salt sensitivity appears more prevalent in people of indigenous African origin. The underlying genetics of salt-sensitive hypertension, however, are poorly understood. In this study, computational methods including text- and data-mining have been used to select and prioritize candidate aetiological genes for salt-sensitive hypertension. Additionally, we have compared allele frequencies and copy number variation for single nucleotide polymorphisms in candidate genes between indigenous Southern African and Caucasian populations, with the aim of identifying candidate genes with significant variability between the population groups: identifying genetic variability between population groups can exploit ethnic differences in disease prevalence to aid with prioritisation of good candidate genes. Our top-ranking candidate genes include parathyroid hormone precursor (PTH) and type-1 angiotensin II receptor (AGTR1). We propose that the candidate genes identified in this study warrant further investigation as potential aetiological genes for salt-sensitive hypertension.  相似文献   

6.
Mendelian forms of hypertension have delivered a treasure trove of novel genes. To date, the molecular mechanisms of five such syndromes have been largely clarified, including glucocorticoid-remediable aldosteronism, Liddle's syndrome, apparent mineralocorticoid excess, an activating mutation of the mineralocorticoid receptor, and pseudohypoaldosteronism type 2. Each of these conditions features salt sensitivity with increased sodium and volume reabsorption by the kidney and low plasma renin activity. None of the gene loci for these syndromes has been convincingly linked to hypertension in the general population. We are investigating kindreds who have autosomal-dominant hypertension and brachydactyly. Affected persons invariably have both anomalies. The hypertension is severe and results in death at about age 50 years from stroke. The condition resembles essential hypertension, because renin, aldosterone, and norepinephrine responses are normal and no salt sensitivity is present. The response to antihypertensive drugs is general. Another feature is diminished baroreflex sensitivity with markedly impaired blood pressure buffering. Furthermore, the ventrolateral medulla may be compromised in these patients, because neurovascular anomalies are a regular finding. We mapped the gene(s) for this disease to chromosome 12p and narrowed the chromosomal region by studying more affected families. Interestingly, the same locus was recently mapped in Chinese families with essential hypertension. Our 3-centimorgan region contains genes encoding a phosphodiesterase, an ATP-dependent potassium channel, and its regulator the sulfonylurea receptor 2. Screening of the coding regions revealed that none of these candidate genes harbor obvious mutations; however, other genetic mechanisms may nevertheless compromise their function. Our study underscores the importance of regulatory physiology to the understanding of a complex genetic syndrome.  相似文献   

7.
The spontaneously hypertensive rat (SHR) is a good model to study several diseases such as the attention-deficit hyperactivity disorder, cardiopulmonary impairment, nephropathy, as well as hypertension, which is a multifactor disease that possibly involves alterations in gene expression in hypertensive relative to normotensive subjects. In this study, we used high-density oligoarrays to compare gene expression profiles in cultured neurons and glia from brainstem of newborn normotensive Wistar Kyoto (WKY) and SHR rats. We found 376 genes differentially expressed between SHR and WKY brainstem cells that preferentially map to 17 metabolic/signaling pathways. Some of the pathways and regulated genes identified herein are obviously related to cardiovascular regulation; in addition there are several genes differentially expressed in SHR not yet associated to hypertension, which may be attributed to other differences between SHR and WKY strains. This constitute a rich resource for the identification and characterization of novel genes associated to phenotypic differences observed in SHR relative to WKY, including hypertension. In conclusion, this study describes for the first time the gene profiling pattern of brainstem cells from SHR and WKY rats, which opens up new possibilities and strategies of investigation and possible therapeutics to hypertension, as well as for the understanding of the brain contribution to phenotypic differences between SHR and WKY rats.  相似文献   

8.
通过构建肺动脉高压差异基因和冠状病毒侵入人体后免疫反应相关基因的互作网络,探索COVID-19对肺动脉高压的影响机制。首先通过Meta分析挖掘肺动脉高压相关差异表达基因;其次通过SARS-CoV侵染人体后的基因表达数据,挖掘主要功能通路;最后构建肺动脉高压差异表达基因和冠状病毒主要功能通路基因的互作网络,挖掘网络的显著功能模块。发现肺动脉高压与血管平滑肌细胞、成纤细胞、T/B细胞免疫过程、转录调节因子通路、Toll样信号通路等密切相关,互作网络发现ITGAM、HBB、VCAM1、IL1R2等基因是COVID-19感染肺动脉高压患者的重要调节基因。通过肺动脉高压与冠状病毒感染机体后蛋白质互作网络探索了COVID-19对肺动脉高压的影响机制,为肺动脉高压感染COVID-19的研究及治疗提供了新思路。  相似文献   

9.
Essential hypertension is a common multifactorial heritable condition in which increased sympathetic outflow from the central nervous system is involved in the elevation in blood pressure (BP), as well as the exaggerated morning surge in BP that is a risk factor for myocardial infarction and stroke in hypertensive patients. The Schlager BPH/2J mouse is a genetic model of hypertension in which increased sympathetic outflow from the hypothalamus has an important etiological role in the elevation of BP. Schlager hypertensive mice exhibit a large variation in BP between the active and inactive periods of the day, and also show a morning surge in BP. To investigate the genes responsible for the circadian variation in BP in hypertension, hypothalamic tissue was collected from BPH/2J and normotensive BPN/3J mice at the ‘peak’ (n = 12) and ‘trough’ (n = 6) of diurnal BP. Using Affymetrix GeneChip® Mouse Gene 1.0 ST Arrays, validation by quantitative real-time PCR and a statistical method that adjusted for clock genes, we identified 212 hypothalamic genes whose expression differed between ‘peak’ and ‘trough’ BP in the hypertensive strain. These included genes with known roles in BP regulation, such as vasopressin, oxytocin and thyrotropin releasing hormone, as well as genes not recognized previously as regulators of BP, including chemokine (C-C motif) ligand 19, hypocretin and zinc finger and BTB domain containing 16. Gene ontology analysis showed an enrichment of terms for inflammatory response, mitochondrial proton-transporting ATP synthase complex, structural constituent of ribosome, amongst others. In conclusion, we have identified genes whose expression differs between the peak and trough of 24-hour circadian BP in BPH/2J mice, pointing to mechanisms responsible for diurnal variation in BP. The findings may assist in the elucidation of the mechanism for the morning surge in BP in essential hypertension.  相似文献   

10.
Just the beginning: novel functions for angiotensin-converting enzymes   总被引:14,自引:0,他引:14  
Cardiovascular disease is predicted to be the commonest cause of death worldwide by the year 2020. Diabetes, smoking and hypertension are the main risk factors. The renin-angiotensin system plays a key role in regulating blood pressure and fluid and electrolyte homeostasis in mammals. The discovery of specific drugs that block either the key enzyme of the renin-angiotensin system, angiotensin-converting enzyme (ACE), or the receptor for its main effector angiotensin II, was a major step forward in the treatment of hypertension and heart failure. In recent years, however, the renin-angiotensin system has been shown to be a far more complex system than initially thought. It has become clear that additional peptide mediators are involved. Furthermore, a new ACE, angiotensin-converting enzyme 2 (ACE2), has been discovered which appears to negatively regulate the renin-angiotensin system. In the heart, ACE2 deficiency results in severe impairment of cardiac contractility and upregulation of hypoxia-induced genes. We shall discuss the interplay of the various effector peptides generated by angiotensin-converting enzymes ACE and ACE2, highlighting the role of ACE2 as a negative regulator of the renin-angiotensin system.  相似文献   

11.
D5 dopamine receptor knockout mice and hypertension   总被引:9,自引:0,他引:9  
Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. All of the five dopamine receptor genes (D1, D2, D3, D4, and D5) expressed in mammals and some of their regulators are in loci linked to hypertension in humans and in rodents. Under normal conditions, D1-like receptors (D1 and D5) inhibit sodium transport in the kidney and the intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats, and humans with essential hypertension, the D1-like receptor-mediated inhibition of sodium transport is impaired because of an uncoupling of the D1-like receptor from its G protein/effector complex. The uncoupling is genetic, and receptor-, organ-, and nephron segment-specific. In human essential hypertension, the uncoupling of the D1 receptor from its G protein/effector complex is caused by an agonist-independent serine phosphorylation/desensitization by constitutively active variants of the G protein-coupled receptor kinase type 4. The D5 receptor is also important in blood pressure regulation. Disruption of the D5 or the D1 receptor gene in mice increases blood pressure. However, unlike the D1 receptor, the hypertension in D5 receptor null mice is caused by increased activity of the sympathetic nervous system, apparently due to activation of oxytocin, V1 vasopressin, and non-N-methyl D-aspartate receptors in the central nervous system. The cause of the activation of these receptors remains to be determined.  相似文献   

12.
Essential hypertension is one of the most common multifactorial diseases,affecting 20%-30% of the human population (Ibrahim and Damasceno,2012).Based on the results of twin studies,adoption studies and statistical analyses of blood pressure (BP) across various pedigrees,it has been estimated that 30%-50% of the variability in blood pressure among the general population is genetically determined (Garcia et al.,2003).Although the genetic mechanisms of essential hypertension have not been studied well,investigations for the genes that constitute the renin-angiotensin system (RAS) appear to be particularly promising,since this system plays a central role in the regulation of blood pressure (Ferrario,2010).  相似文献   

13.
人类原发性高血压候选基因的研究进展   总被引:1,自引:0,他引:1  
杨文杰  顾东风 《遗传》2001,23(5):487-491
原发性高血压是一种遗传与环境因素相互作用所致的多基因遗传性疾病,其相关或易感研究在近年来非常活跃。利用家系或同胞对,采用基因组扫描结合候选基因策略,迄今已筛选出了数十年原发性高血压的可能相关基因,本从与人体血压生理生化代谢相关的几条途径中,选择介绍了与血压调节密切相关的几个候选基因的研究进展。  相似文献   

14.
Hypertension is a complex disorder with high prevalence rates all over the world. We conducted the first genome-wide gene-based association scan for hypertension in a Han Chinese population. By analyzing genome-wide single-nucleotide-polymorphism data of 400 matched pairs of young-onset hypertensive patients and normotensive controls genotyped with the Illumina HumanHap550-Duo BeadChip, 100 susceptibility genes for hypertension were identified and also validated with permutation tests. Seventeen of the 100 genes exhibited differential allelic and expression distributions between patient and control groups. These genes provided a good molecular signature for classifying hypertensive patients and normotensive controls. Among the 17 genes, IGF1, SLC4A4, WWOX, and SFMBT1 were not only identified by our gene-based association scan and gene expression analysis but were also replicated by a gene-based association analysis of the Hong Kong Hypertension Study. Moreover, cis-acting expression quantitative trait loci associated with the differentially expressed genes were found and linked to hypertension. IGF1, which encodes insulin-like growth factor 1, is associated with cardiovascular disorders, metabolic syndrome, decreased body weight/size, and changes of insulin levels in mice. SLC4A4, which encodes the electrogenic sodium bicarbonate cotransporter 1, is associated with decreased body weight/size and abnormal ion homeostasis in mice. WWOX, which encodes the WW domain-containing protein, is related to hypoglycemia and hyperphosphatemia. SFMBT1, which encodes the scm-like with four MBT domains protein 1, is a novel hypertension gene. GRB14, TMEM56 and KIAA1797 exhibited highly significant differential allelic and expressed distributions between hypertensive patients and normotensive controls. GRB14 was also found relevant to blood pressure in a previous genetic association study in East Asian populations. TMEM56 and KIAA1797 may be specific to Taiwanese populations, because they were not validated by the two replication studies. Identification of these genes enriches the collection of hypertension susceptibility genes, thereby shedding light on the etiology of hypertension in Han Chinese populations.  相似文献   

15.
QTL mapping in humans and rats has identified hundreds of blood-pressure-related phenotypes and genomic regions; the next daunting task is gene identification and validation. The development of novel rat model systems that mimic many elements of the human disease, coupled with advances in the genomic and informatic infrastructure for rats, promise to revolutionize the hunt for genes that determine susceptibility to hypertension. Furthermore, methods are evolving that should enable the identification of candidate genes in human populations. Together with the computational reconstruction of regulatory networks, these methods provide opportunities to significantly advance our understanding of the underlying aetiology of hypertension.  相似文献   

16.
通过网络药理学和分子对接技术探讨银杏叶治疗高血压的潜在作用机制.首先,通过TCMSP、Swiss Target Prediction、Uniprot等数据库获取银杏叶的化学成分与对应靶点;运用OMIM、DrugBank及Gencards疾病数据库搜索高血压相关靶点.然后,取银杏叶对应靶点与高血压相关靶点的交集即可得到银...  相似文献   

17.
Centrally mediated increases in sympathetic nerve activity and attenuated arterial baroreflexes contribute to the pathogenesis of hypertension. Despite the characterization of cellular and physiological mechanisms that regulate blood pressure and alterations that contribute to hypertension, the genetic and molecular basis of this pathophysiology remains poorly understood. Strategies to identify genes that contribute to central pathophysiologic mechanisms in hypertension include integrative biochemistry and physiology as well as functional genomics. This article summarizes recent progress in applying functional genomics to elucidate the genetic basis of altered central blood pressure regulatory mechanisms in hypertension. We describe approaches others and we have undertaken to investigate gene expression profiles in hypertensive models in order to identify genes that contribute to the pathogenesis of hypertension. Finally, we provide the readers a roadmap for negotiating the route from experimental findings of gene expression profiling to translating their therapeutic potential. The combination of gene expression profiling and the phenotypic characterization of in vitro and in vivo loss or gain of function experiments for candidate genes have the potential to identify genes involved in the pathogenesis of hypertension and may present novel targets for therapy.  相似文献   

18.
19.
Hypertension is a leading cause of stroke, heart disease, and kidney failure. The genetic basis of blood pressure variation is largely unknown but is likely to involve genes that influence renal salt handling and arterial vessel tone. Here we argue that susceptibility to hypertension is ancestral and that differential susceptibility to hypertension is due to differential exposure to selection pressures during the out-of-Africa expansion. The most important selection pressure was climate, which produced a latitudinal cline in heat adaptation and, therefore, hypertension susceptibility. Consistent with this hypothesis, we show that ecological variables, such as latitude, temperature, and rainfall, explain worldwide variation in heat adaptation as defined by seven functional alleles in five genes involved in blood pressure regulation. The latitudinal cline in heat adaptation is consistent worldwide and is largely unmatched by latitudinal clines in short tandem repeat markers, control single nucleotide polymorphisms, or non-functional single nucleotide polymorphisms within the five genes. In addition, we show that latitude and one of these alleles, GNB3 (G protein β3 subunit) 825T, account for a major portion of worldwide variation in blood pressure. These results suggest that the current epidemic of hypertension is due to exposures of the modern period interacting with ancestral susceptibility. Modern populations differ in susceptibility to these new exposures, however, such that those from hot environments are more susceptible to hypertension than populations from cold environments. This differential susceptibility is likely due to our history of adaptation to climate.  相似文献   

20.
The prevalence of hypertension in men is higher than in women and the onset of this disease is earlier in male than in female subjects. In spontaneously hypertensive rats, males also have higher blood pressures than females. Evidence from epidemiological, physiological, molecular biological and morphological studies concerning this sexual dimorphism is reviewed. We demonstrate that the gonadal steroids testosterone and estrogen have important effects on the gene regulation of the renin-angiotensin system. This may in part contribute to the sexual dimorphism in blood pressure control. The direct effect of steroid hormones on genes related to hypertension provides a suitable paradigm to improve our understanding of molecular and cellular mechanisms of cardiovascular control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号