共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of residues in the monocyte chemotactic protein-1 that contact the MCP-1 receptor, CCR2. 总被引:7,自引:0,他引:7
S Hemmerich C Paavola A Bloom S Bhakta R Freedman D Grunberger J Krstenansky S Lee D McCarley M Mulkins B Wong J Pease L Mizoue T Mirzadegan I Polsky K Thompson T M Handel K Jarnagin 《Biochemistry》1999,38(40):13013-13025
The CC chemokine, MCP-1, has been identified as a major chemoattractant for T cells and monocytes, and plays a significant role in the pathology of inflammatory diseases. To identify the regions of MCP-1 that contact its receptor, CCR2, we substituted all surface-exposed residues with alanine. Some residues were also mutated to other amino acids to identify the importance of charge, hydrophobicity, or aromaticity at specific positions. The binding affinity of each mutant for CCR2 was assayed with THP-1 and CCR2-transfected CHL cells. The majority of point mutations had no effect. Residues at the N-terminus of the protein, known to be crucial for signaling, contribute less than a factor of 10 to the binding affinity. However, two clusters of primarily basic residues (R24, K35, K38, K49, and Y13), separated by a 35 A hydrophobic groove, reduced the level of binding by 15-100-fold. A peptide fragment encompassing residues 13-35 recapitulated some of the mutational data derived from the intact protein. It exhibited modest binding as a linear peptide and dramatically improved affinity when the region which adopts a single turn of a 3(10)-helix in the protein, which includes R24, was constrained by a disulfide bond. Additional constraints at the ends of the peptide, corresponding to the disulfide between the first and third cysteines in MCP-1, yielded further improvements in affinity. Together, these data suggest a model in which a large surface area of MCP-1 contacts the receptor, and the accumulation of a number of weak interactions results in the 35 pM affinity observed for the wild-type (WT) protein. The receptor binding site of MCP-1 also is significantly different from the binding sites of RANTES and IL-8, providing insight into the issue of receptor specificity. It was previously shown that the N-terminus of CCR2 is critical for binding MCP-1 [Monteclaro, F. S., and Charo, I. F. (1996) J. Biol. Chem. 271, 19084-92; Monteclaro, F. S., and Charo, I. F. (1997) J. Biol. Chem. 272, 23186-90]. Point mutations of six acidic residues in this region of the receptor were made to test their role in ligand binding. This identified D25 and D27 of the DYDY motif as being important. On the basis of our data, we propose a model in which the receptor N-terminus lies along the hydrophobic groove in an extended fashion, placing the DYDY motif near the basic cluster involving R24 and K49 of MCP-1. This in turn orients the signaling residues (Y13 and the N-terminus) for productive interaction with the receptor. 相似文献
2.
Defective expression of the monocyte chemotactic protein-1 receptor CCR2 in macrophages associated with human ovarian carcinoma 总被引:9,自引:0,他引:9
Sica A Saccani A Bottazzi B Bernasconi S Allavena P Gaetano B Fei F LaRosa G Scotton C Balkwill F Mantovani A 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(2):733-738
Monocyte chemotactic protein-1 (MCP-1, CCL2) is an important determinant of macrophage infiltration in tumors, ovarian carcinoma in particular. MCP-1 binds the chemokine receptor CCR2. Recent results indicate that proinflammatory and anti-inflammatory signals regulate chemokine receptor expression in monocytes. The present study was designed to investigate the expression of CCR2 in tumor-associated macrophages (TAM) from ovarian cancer patients. TAM isolated from ascitic or solid ovarian carcinoma displayed defective CCR2 mRNA (Northern blot and PCR) and surface expression and did not migrate in response to MCP-1. The defect was selective for CCR2 in that CCR1 and CCR5 were expressed normally in TAM. CCR2 gene expression and chemotactic response to MCP-1 were decreased to a lesser extent in blood monocytes from cancer patients. CCR2 mRNA levels and the chemotactic response to MCP-1 were drastically reduced in fresh monocytes cultured in the presence of tumor ascites from cancer patients. Ab against TNF-alpha restored the CCR2 mRNA level in monocytes cultured in the presence of ascitic fluid. The finding of defective CCR2 expression in TAM, largely dependent on local TNF production, is consistent with previous in vitro data on down-regulation of chemokine receptors by proinflammatory molecules. Receptor inhibition may serve as a mechanism to arrest and retain recruited macrophages and to prevent chemokine scavenging by mononuclear phagocytes at sites of inflammation and tumor growth. In the presence of advanced tumors or chronic inflammation, systemic down-regulation of receptor expression by proinflammatory molecules leaking in the systemic circulation may account for defective chemotaxis and a defective capacity to mount inflammatory responses associated with advanced neoplasia. 相似文献
3.
Parrill AL Wang D Bautista DL Van Brocklyn JR Lorincz Z Fischer DJ Baker DL Liliom K Spiegel S Tigyi G 《The Journal of biological chemistry》2000,275(50):39379-39384
Originating from its DNA sequence, a computational model of the Edg1 receptor has been developed that predicts critical interactions with its ligand, sphingosine 1-phosphate. The basic amino acids Arg(120) and Arg(292) ion pair with the phosphate, whereas the acidic Glu(121) residue ion pairs with the ammonium moiety of sphingosine 1-phosphate. The requirement of these interactions for specific ligand recognition has been confirmed through examination of site-directed mutants by radioligand binding, ligand-induced [(35)S]GTPgammaS binding, and receptor internalization assays. These ion-pairing interactions explain the ligand specificity of the Edg1 receptor and provide insight into ligand specificity differences within the Edg receptor family. This computational map of the ligand binding pocket provides information necessary for understanding the molecular pharmacology of this receptor, thus underlining the potential of the computational method in predicting ligand-receptor interactions. 相似文献
4.
Sanders SK Crean SM Boxer PA Kellner D LaRosa GJ Hunt SW 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(9):4877-4883
The monocyte chemotactic protein-1 (MCP-1) receptor (MCP-1R) is expressed on monocytes, a subpopulation of memory T lymphocytes, and basophils. Two alternatively spliced forms of MCP-1R, CCR2A and CCR2B, exist and differ only in their carboxyl-terminal tails. To determine whether CCR2A and CCR2B receptors function similarly, Jurkat T cells were stably transfected with plasmids encoding the human CCR2A or CCR2B gene. Nanomolar concentrations of MCP-1 induced chemotaxis in the CCR2B transfectants that express high, intermediate, and low levels of MCP-1R. Peak chemotactic activity was shifted to the right as receptor number decreased. Five-fold more MCP-1 was required to initiate chemotaxis of the CCR2A low transfectant, but the peak of chemotaxis was similar for the CCR2A and CCR2B transfectants expressing similar numbers of receptors. MCP-1-induced chemotaxis was sensitive to pertussis toxin, implying that both CCR2A and CCR2B are G(i)alpha protein coupled. MCP-1 induced a transient Ca(2+) flux in the CCR2B transfectant that was partially sensitive to pertussis toxin. In contrast, MCP-1 did not induce Ca(2+) flux in the CCR2A transfectant. Since MCP-1 can stimulate chemotaxis of the CCR2A transfectant without inducing Ca(2+) mobilization, Ca(2+) flux may not be required for MCP-1-induced chemotaxis in the Jurkat transfectants. These results indicate that functional differences exist between the CCR2A and CCR2B transfectants that can be attributed solely to differences in the carboxyl-terminal tail. 相似文献
5.
Differential roles of CC chemokine ligand 2/monocyte chemotactic protein-1 and CCR2 in the development of T1 immunity 总被引:10,自引:0,他引:10
Traynor TR Herring AC Dorf ME Kuziel WA Toews GB Huffnagle GB 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(9):4659-4666
CCR2 and its major ligand, chemokine ligand 2 (CCL2)/monocyte chemotactic protein-1, have been found to influence T1/T2 immune response polarization. Our objective was to directly compare the roles of CCR2 and CCL2 in T1/T2 immune response polarization using a model of pulmonary Cryptococcus neoformans infection. Either deletion of CCR2 or treatment of wild-type mice with CCL2 neutralizing Ab produced significant and comparable reductions in macrophage and T cell recruitment into the lungs following infection. Both CCL2 neutralization and CCR2 deficiency resulted in significantly diminished IFN-gamma production, and increased IL-4 and IL-5 production by lung leukocytes (T1 to T2 switch), but only CCR2 deficiency promoted pulmonary eotaxin production and eosinophilia. In the lung-associated lymph nodes (LALN), CCL2-neutralized mice developed Ag-specific IFN-gamma-producing cells, while CCR2 knockout mice did not. LALN from CCR2 knockout mice also had fewer MHCII(+)CD11c(+) and MHCII(+)CD11b(+) cells, and produced significantly less IL-12p70 and TNF-alpha when stimulated with heat-killed yeast than LALN from wild-type or CCL2-neutralized mice, consistent with a defect in APC trafficking in CCR2 knockout mice. Neutralization of CCL2 in CCR2 knockout mice did not alter immune response development, demonstrating that the high levels of CCL2 in these mice did not play a role in T2 polarization. Therefore, CCR2 (but not CCL2) is required for afferent T1 development in the lymph nodes. In the absence of CCL2, T1 cells polarize in the LALN, but do not traffic from the lymph nodes to the lungs, resulting in a pulmonary T2 response. 相似文献
6.
Monocyte chemotactic protein-1 receptor CCR2B is a glycoprotein that has tyrosine sulfation in a conserved extracellular N-terminal region 总被引:5,自引:0,他引:5
Preobrazhensky AA Dragan S Kawano T Gavrilin MA Gulina IV Chakravarty L Kolattukudy PE 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(9):5295-5303
Monocyte chemotactic protein-1 (MCP-1) binding to its receptor, CCR2B, plays an important role in a variety of diseases involving infection, inflammation, and/or injury. In our effort to understand the molecular basis of this interaction and its biological consequences, we recognized a conserved hexad of amino acids at the N-terminal extracellular domain of several chemokine receptors, including CCR2B. Human embryonic kidney 293 cells expressing Flag-tagged CCR2B containing site-directed mutations in this region, 21-26, including a consensus tyrosine sulfation site were used to determine MCP-1 binding and its biological consequences. The results showed that several of these amino acids are important for MCP-1 binding and consequent lamellipodium formation, chemotaxis, and signal transduction involving adenylate cyclase inhibition and Ca(2+) influx into cytoplasm. Mutations that prevented adenylate cyclase inhibition and Ca(2+) influx did not significantly inhibit lamellipodium formation and chemotaxis, suggesting that these signaling events are not involved in chemotaxis. CCR2B was found to be sulfated at Tyr(26); this sulfation was abolished by the substitution of Tyr with Ala and severely reduced by substitution of Asp(25), a part of the consensus sulfation site. The expressed CCR2B was found to be N:-glycosylated, as N:-glycosidase F treatment of the receptor or growth of the cells in tunicamycin reduced the receptor size to the same level, from 50 to 45 kDa. Thus, CCR2B is the first member of the CC chemokine receptor family shown to be a glycoprotein that is sulfated at the N-terminal Tyr. These post-translational modifications probably have significant biological functions. 相似文献
7.
8.
CCR11 is a functional receptor for the monocyte chemoattractant protein family of chemokines 总被引:4,自引:0,他引:4
Chemokines mediate their diverse activities through G protein-coupled receptors. The human homolog of the bovine orphan receptor PPR1 shares significant similarity to chemokine receptors. Transfection of this receptor into murine L1.2 cells resulted in responsiveness to monocyte chemoattractant protein (MCP)-4, MCP-2, and MCP-1 in chemotaxis assays. Binding studies with radiolabeled MCP-4 demonstrated a single high affinity binding site with an IC(50) of 0.14 nM. As shown by competition binding, other members of the MCP family also recognized this receptor. MCP-2 was the next most potent ligand, with an IC(50) of 0.45 nM. Surprisingly, eotaxin (IC(50) = 6.7 nM) and MCP-3 (IC(50) = 4.1 nM) bind with greater affinity than MCP-1 (IC(50) = 10.7 nM) but only act as agonists in chemotaxis assays at 100-fold higher concentrations. Because of high affinity binding and functional chemotactic responses, we have termed this receptor CCR11. The gene for CCR11 was localized to human chromosome 3q22, which is distinct from most CC chemokine receptor genes at 3p21. Northern blot hybridization was used to identify CCR11 expression in heart, small intestine, and lung. Thus CCR11 shares functional similarity to CCR2 because it recognizes members of the MCP family, but CCR11 has a distinct expression pattern. 相似文献
9.
10.
Staudinger R Phogat SK Xiao X Wang X Dimitrov DS Zolla-Pazner S 《The Journal of biological chemistry》2003,278(12):10389-10392
The chemokine receptor CCR5 is constitutively associated with the T cell co-receptor CD4 in plasma cell membranes, but the physiological role of this interaction has not been elucidated. Here we show that detergent-solubilized, purified CCR5 can directly associate with purified soluble fragments of the extracellular portion of CD4. We further demonstrate that the physical association of CCR5 and CD4 in membrane vesicles results in the formation of a receptor complex that exhibits macrophage inflammatory protein 1beta (MIP-1beta) binding properties that are distinct from CCR5. The affinity of the CD4-CCR5 complex for MIP-1beta was 3.5-fold lower than for CCR5, but the interaction of CD4 and CCR5 resulted in a receptor complex that exhibited enhanced G-protein signaling as compared with CCR5 alone. MIP-1beta-induced G-protein activation was further increased by simultaneous stimulation of CD4 with its natural agonist, interleukin-16. Thus, the physical association of CD4 and CCR5 results in receptor cross-talk with allosteric CD4-dependent regulation of the binding and signaling properties of CCR5. Although the precise physiological role of the CD4 effects on CCR5-mediated signaling remains unknown, one can speculate that the cross-talk is a component of mechanisms involved in the fine tuning of immune system cell responses. 相似文献
11.
The alpha-factor receptor (Ste2p) stimulates mating of the yeast Saccharomyces cerevisiae. Ste2p belongs to the large family of G protein-coupled receptors that are characterized by seven transmembrane alpha-helices. Receptor activation is thought to involve changes in the packing of the transmembrane helix bundle. To identify residues that contribute to Ste2p activation, second-site suppressor mutations were isolated that restored function to defective receptors carrying either an F204S or Y266C substitution which affect residues at the extracellular ends of transmembrane domains 5 and 6, respectively. Thirty-five different suppressor mutations were identified. On their own, these mutations caused a range of phenotypes, including hypersensitivity, constitutive activity, altered ligand binding, and loss of function. The majority of the mutations affected residues in the transmembrane segments that are predicted to face the helix bundle. Many of the suppressor mutations caused constitutive receptor activity, suggesting they improved receptor function by partially restoring the balance between the active and inactive states. Analysis of mutations in transmembrane domain 7 implicated residues Ala281 and Thr282 in receptor activation. The A281T and T282A mutants were supersensitive to S. cerevisiae alpha-factor, but were defective in responding to a variant of alpha-factor produced by another species, Saccharomyces kluyveri. The A281T mutant also displayed 8.7-fold enhanced basal signaling. Interestingly, Ala281 and Thr282 are situated in approximately the same position as Lys296 in rhodopsin, which is covalently linked to retinal. These results suggest that transmembrane domain 7 plays a role in receptor activation in a wide range of G protein-coupled receptors from yeast to humans. 相似文献
12.
Sialyl residues modulate LPS-mediated signaling through the Toll-like receptor 4 complex 总被引:1,自引:0,他引:1
Feng C Stamatos NM Dragan AI Medvedev A Whitford M Zhang L Song C Rallabhandi P Cole L Nhu QM Vogel SN Geddes CD Cross AS 《PloS one》2012,7(4):e32359
We previously reported that neuraminidase (NA) pretreatment of human PBMCs markedly increased their cytokine response to lipopolysaccharide (LPS). To study the mechanisms by which this occurs, we transfected HEK293T cells with plasmids encoding TLR4, CD14, and MD2 (three components of the LPS receptor complex), as well as a NFκB luciferase reporting system. Both TLR4 and MD2 encoded by the plasmids are α-2,6 sialylated. HEK293T cells transfected with TLR4/MD2/CD14 responded robustly to the addition of LPS; however, omission of the MD2 plasmid abrogated this response. Addition of culture supernatants from MD2 (sMD2)-transfected HEK293T cells, but not recombinant, non-glycosylated MD2 reconstituted this response. NA treatment of sMD2 enhanced the LPS response as did NA treatment of the TLR4/CD14-transfected cell supplemented with untreated sMD2, but optimal LPS-initiated responses were observed with NA-treated TLR4/CD14-transfected cells supplemented with NA-treated sMD2. We hypothesized that removal of negatively charged sialyl residues from glycans on the TLR4 complex would hasten the dimerization of TLR4 monomers required for signaling. Co-transfection of HEK293T cells with separate plasmids encoding either YFP- or FLAG-tagged TLR4, followed by treatment with NA and stimulation with LPS, led to an earlier and more robust time-dependent dimerization of TLR4 monomers on co-immunoprecipitation, compared to untreated cells. These findings were confirmed by fluorescence resonance energy transfer (FRET) analysis. Overexpression of human Neu1 increased LPS-initiated TLR4-mediated NFκB activation and a NA inhibitor suppressed its activation. We conclude that (1) sialyl residues on TLR4 modulate LPS responsiveness, perhaps by facilitating clustering of the homodimers, and that (2) sialic acid, and perhaps other glycosyl species, regulate MD2 activity required for LPS-mediated signaling. We speculate that endogenous sialidase activity mobilized during cell activation may play a role in this regulation. 相似文献
13.
14.
Seiya Tanaka Simone R Green Oswald Quehenberger 《Biochemical and biophysical research communications》2002,290(1):73-80
Two isoforms of human CCR2, the receptor for monocyte chemoattractant protein-1 (MCP-1), have been identified but their relative expression in monocytes and contribution to inflammatory responses mediated by MCP-1 remain uncertain. All available information on CCR2 expression is based on mRNA data because isoform-specific antibodies were not available until now. To analyze the relative expression of each isoform, we made two antibodies that specifically recognized CCR2A and CCR2B. Examination of receptor protein with these isoform-specific antibodies showed that the total expression of CCR2B in monocytes was about 10-fold higher than that of CCR2A with an equal distribution between the cell surface and intracellular pools. A detailed analysis using purified plasma membranes demonstrated that about 90% of all CCR2 on the cell surface were composed of CCR2B. The relatively abundant expression of CCR2B on the cell surface suggests a principal role of this isoform as a mediator of monocyte responses to MCP-1 in inflammation. 相似文献
15.
Monocytes are recruited from the circulation into the subendothelial space where they differentiate into mature macrophages and internalize modified lipoproteins to become lipid-laden foam cells. The accumulation of monocytes is mediated by the interaction of locally produced chemoattractant protein-1 (MCP-1) with its receptor CCR2. The objective of the present study is to demonstrate the differential effects of plasma lipoproteins on monocyte CCR2 expression. The CCR2 expression was increased about 2.4-fold in monocytes isolated from hypercholesterolemic patients, compared to monocytes from normal controls. There was a significant correlation between CCR2 expression and plasma low density lipoprotein (LDL). Elevated levels of high density lipoprotein (HDL) blunted and even reverted the effects of LDL on CCR2 expression, both in vivo and in vitro. The causal relationship between plasma lipoproteins and CCR2 expression was further confirmed by modulating the lipoprotein profile. Estrogen supplement therapy decreased plasma LDL cholesterol, increased plasma HDL cholesterol, and reduced CCR2 expression in hypercholesterolemic postmenopausal women, but had no effect on the plasma lipid profile or CCR2 expression in normocholesterolemic subjects. The physiological significance of altered CCR2 expression was tested by chemotaxis assay, and our results demonstrated that treatment of THP-1 monocytes with LDL induced CCR2 expression and substantially enhanced the chemotaxis elicited by MCP-1. Our findings suggest that plasma lipoproteins differentially control monocyte function and that monocytes from hypercholesterolemic subjects are hyperresponsive to chemotactic stimuli. This may increase their accumulation in the vessel wall and accelerate the pathogenic events of atherogenesis. 相似文献
16.
Montecucco F Burger F Mach F Steffens S 《American journal of physiology. Heart and circulatory physiology》2008,294(3):H1145-H1155
Recruitment of leukocytes to inflammatory sites is crucial in the pathogenesis of chronic inflammatory diseases. The aim of this study was to investigate if activation of CB2 cannabinoid receptors would modulate the chemotactic response of human monocytes. Human monocytes treated with the CB2 agonist JWH-015 for 12-18 h showed significantly reduced migration to chemokines CCL2 and CCL3, associated with reduced mRNA and surface expression of their receptors CCR2 and CCR1. The induction of ICAM-1 in response to IFN-gamma was inhibited by JWH-015. Moreover, JWH-015 cross-desensitized human monocytes for migration in response to CCL2 and CCL3 by its own chemoattractant properties. The CB2-selective antagonist SR-144528, but not the CB1 antagonist SR-147778, reversed JWH-015-induced actions, whereas the CB2 agonist JWH-133 mimicked the effects of JWH-015. The investigation of underlying pathways revealed the involvement of phosphatidylinositol 3-kinase/Akt and ERK1/2 but not p38 MAPK. In conclusion, selective activation of CB2 receptors modulates chemotaxis of human monocytes, which might have crucial effects in chronic inflammatory disorders such as atherosclerosis or rheumatoid arthritis. 相似文献
17.
C M Fraser 《The Journal of biological chemistry》1989,264(16):9266-9270
Using site-directed mutagenesis of the human beta 2-adrenergic receptor and continuous expression in B-82 cells, the role of 3 conserved cysteines in transmembrane domains and 2 conserved cysteines in the third extracellular domain in receptor function was examined. Cysteine was replaced with serine in each mutant receptor as this amino acid is similar to cysteine in size but it cannot form disulfide linkages. Replacement of cysteine residues 77 and 327, in the second and seventh transmembrane-spanning domains, respectively, had no effect on ligand binding or the ability of the receptor to mediate isoproterenol stimulation of adenylate cyclase. Substitution of cysteine 285, in the sixth transmembrane domain of the receptor, produced a mutant receptor with normal ligand-binding properties but a significantly attenuated ability to mediate stimulation of adenylate cyclase. Mutation of cysteine residues 190 and 191, in the third extracellular loop of the beta 2 receptor, had qualitatively similar effects on ligand binding and isoproterenol-mediated stimulation of adenylate cyclase. Replacement of either of these residues with serine produced mutant receptors that displayed a marked loss in affinity for both beta-adrenergic agonists and antagonists. Replacement of both cysteine 190 and 191 with serine had an even greater effect on the ability of the receptor to bind ligands. Consistent with the loss of Ser190 and/or Ser191 mutant receptor affinity for agonists was a corresponding shift to the right in the dose-response curve for isoproterenol-induced increases in intracellular cyclic AMP concentrations in cells expressing the mutant receptors. These data implicate one of the conserved transmembrane cysteine residues in the human beta 2-adrenergic receptor in receptor activation by agonists and also suggest that conserved cysteine residues in an extracellular domain of the receptor may be involved in ligand binding. 相似文献
18.
19.
20.
Novel variants of the IL-10 receptor 1 affect inhibition of monocyte TNF-alpha production 总被引:3,自引:0,他引:3
Gasche C Grundtner P Zwirn P Reinisch W Shaw SH Zdanov A Sarma U Williams LM Foxwell BM Gangl A 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(11):5578-5582
IL-10-deficient mice exhibit spontaneous enterocolitis and other symptoms akin to Crohn's disease, indicating that IL-10 might regulate normal physiology in the gut. However, clinical trials with IL-10 in Crohn's disease were disappointing, although some patients showed healing of intestinal mucosa. This study searched for genetic polymorphisms within the IL-10 pathway. We decided to screen for mutations of the IL-10R1 cDNA in healthy volunteers and Crohn's disease patients and identified two novel variants: a serine 138-to-glycine (S138G) and a glycine 330-to-arginine (G330R) substitution. The allelic frequency in a European cohort was relatively high (16% for the S138G and 33% for the G330R), and S138G was in strong linkage disequilibrium with G330R. A similar allele frequency was found in a group of Crohn's patients. In IL-10R1 G330R-expressing monocytes, the inhibitory effect of IL-10 on TNF-alpha production was diminished, indicating that this variant may be a loss-of-function allele. No such difference was observed between haplotypes 4 (G330R only) and 7 (S138G and G330R). In addition, these IL-10R1 variants had no influence on the IL-10R1 expression density. Structural analysis of the S138G variant revealed that the substitution of S138G may interfere with binding of IL-10 to IL-10R1. 相似文献