共查询到20条相似文献,搜索用时 15 毫秒
1.
Pinpointing phosphotyrosine-dependent interactions downstream of the collagen receptor DDR1 总被引:1,自引:0,他引:1
Activation of the receptor tyrosine kinase DDR1 by collagen results in robust and sustained phosphorylation, however little is known about its downstream mediators. Using phosphopeptide mapping and site-directed mutagenesis, we here identified multiple tyrosine phosphorylation sites within DDR1. We found that Nck2 and Shp-2, two SH2 domain-containing proteins, bind to DDR1 in a collagen-dependent manner. The binding site of Shp-2 was mapped to tyrosine-740 of DDR1 within an ITIM-consensus sequence. Lastly, ablation of DDR1 in the mouse mammary gland resulted in delocalized expression of Nck2, suggesting that defects observed during alveologenesis are caused by the lack of the DDR1-Nck2 interaction. 相似文献
2.
Mohd Arish Mohammed Alaidarous Rahat Ali Yusuf Akhter 《Journal of receptor and signal transduction research》2017,37(5):437-446
Sphingosine-1-phosphate signaling is emerging as a critical regulator of cellular processes that is initiated by the intracellular production of bioactive lipid molecule, sphingosine-1-phosphate. Binding of sphingosine-1-phosphate to its extracellular receptors activates diverse downstream signaling that play a critical role in governing physiological processes. Increasing evidence suggests that this signaling pathway often gets impaired during pathophysiological and diseased conditions and hence manipulation of this signaling pathway may be beneficial in providing treatment. In this review, we summarized the recent findings of S1P signaling pathway and the versatile role of the participating candidates in context with several disease conditions. Finally, we discussed its possible role as a novel drug target in different diseases. 相似文献
3.
4.
5.
Abstract: The monosialoganglioside GM1 has been shown to possess neurotrophic activity in vitro and in vivo and is now used as an experimental treatment for a variety of neurological disorders and trauma. Little is known about the mechanism of action used by GM1. Because GM1 appears to enhance nerve growth factor (NGF) activity, we have used C6trk+ cells, a derivative of C6-2B glioma cells that express the high-affinity receptor for NGF trkA , to determine whether the neurotrophic effects of GM1 occurs through induction of trkA activity. Exposure of C6trk+ cells to NGF (10–50 ng/ml) resulted in a five- to 10-fold increase in trkA tyrosine phosphorylation within 5 min. Incubation of cells with GM1 resulted in a threefold increase in trkA phosphorylation beginning within 1 h and peaking between 3 and 6 h. Optimal responses to GM1 were obtained using 80–100 µ M concentrations. Moreover, tyrosine phosphorylation of known trkA target proteins, such as extracellular signal-regulated kinases, and suc -associated neurotrophic factor-induced tyrosine-phosphorylated target, were activated upon stimulation of C6trk+ cells with GM1. In addition, GM1 potentiated the NGF-mediated activation of tyrosine phosphorylation of trkA . GM1 failed to induce phosphorylation of trkA and target proteins in mock transfected cells. Thus, our data demonstrate that GM1 mimics some of the effects of NGF and suggest that the neurotrophic properties of GM1 may be attributed to its activation of trkA signal transduction. 相似文献
6.
Hitoshi Nakatogawa 《Autophagy》2015,11(2):432-433
As with the case of the mechanism of autophagosome formation, studies in yeast have taken a leading role in elucidating the molecular basis of target recognition during selective autophagy. Degradation targets are recognized by receptor proteins, which also bind to Atg8 homologs on growing phagophore membranes, leading to the loading of the targets into autophagosomes. However, it remains to be elucidated how these processes are regulated. In yeast, receptors also interact with the scaffold/adaptor protein Atg11, which subsequently recruits core Atg proteins onto receptor-target complexes to initiate autophagosome formation. Recently, we found that Hrr25, a homolog of CSNK1D/casein kinase 1δ, regulates 3 of 4 selective autophagy-related pathways in the budding yeast Saccharomyces cerevisiae by a uniform mechanism: phosphoregulation of the receptor-scaffold interaction. 相似文献
7.
Lemaire G Delescluse C Pralavorio M Ledirac N Lesca P Rahmani R 《Life sciences》2004,74(18):2265-2278
Benzimidazoles compounds like omeprazole (OME) and thiabendazole (TBZ) mediate CYP1A1 induction differently from classical aryl hydrocarbon receptor (AhR) ligands, 3-methylcholanthrene (3-MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To clarify the involvement of an intracellular signal pathway in CYP1A1 induction by OME and TBZ, the TBZ, OME and 3-MC signal-transducing pathways were compared by using specific protein tyrosine kinase inhibitors in primary culture of rat hepatocytes. The effect of OME and TBZ (75-250 microM) on cytochrome P450 1A1 (CYP1A1) expression was therefore studied in primary cultures of rat hepatocytes after 24 h, 48 h and 72 h of exposure. Both compounds provoked a dose- and time-dependent increase in CYP1A1 (EROD activity, protein and mRNA levels), but OME was less effective at all the concentrations and times tested. The mechanism of benzimidazole-mediated induction of CYP1A1 was investigated by comparison with 3-MC, a prototypical AhR ligand. As expected, OME and TBZ were unable to displace [(3)H]-TCDD from its binding sites to the AhR in competitive binding studies. Moreover, classic tyrosine kinase inhibitor herbimycin A (HA) inhibited the two benzimidazoles-mediated CYP1A1 inductions, but only partially inhibited the 3-MC-mediated one. Another two tyrosine kinase inhibitors, Lavendustin A (LA) and genistein (GEN), had no effect on CYP1A1 induction by benzimidazoles and 3-MC. These results are consistent with the implication of a tyrosine kinase, most probably the Src tyrosine kinase, in the mechanism of CYP1A1 induction in rat hepatocytes. 相似文献
8.
One of the many pharmacological targets of ethanol is the GABA inhibitory system, and chronic ethanol (CE) is known to alter
the polypeptide levels of the GABAA receptor subunits in rat brain regions. In the present study, we investigated the regulation of the tyrosine kinase phosphorylation
of the GABAA receptor α1-, β2- and γ2-subunits in the rat cerebellum, cerebral cortex and hippocampus following chronic administration of ethanol to the rats.
We observed either down-regulation or no change in the tyrosine kinase phosphorylation of the α1 subunit, whereas there was an up-regulation or no change in the case of β2- and γ2-subunits of the GABAA receptors depending on the brain region following chronic administration of ethanol to the rats. These changes reverted back
to the control level following 48 h of ethanol-withdrawal. These results suggest that tyrosine kinase phosphorylation of GABAA receptors may play a significant role in ethanol dependence. 相似文献
9.
10.
Precise regulation of synapse formation, maintenance and plasticity is crucial for normal cognitive function, and synaptic failure has been suggested as one of the hallmarks of neurodegenerative diseases. In this review, we describe the recent progress in our understanding of how the receptor tyrosine kinase Ephs and their ligands ephrins regulate dendritic spine morphogenesis, synapse formation and maturation, as well as synaptic plasticity. In particular, we discuss the emerging evidence implicating that deregulation of Eph/ephrin signaling contributes to the aberrant synaptic functions associated with cognitive impairment in Alzheimer's disease. Understanding how Eph/ephrin regulates synaptic function may therefore provide new insights into the development of therapeutic agents against neurodegenerative diseases. 相似文献
11.
Huifang XuNicolas Raynal Stavros StathopoulosJohanna Myllyharju Richard W. FarndaleBirgit Leitinger 《Matrix biology》2011,30(1):16-26
The discoidin domain receptors, DDR1 and DDR2 are cell surface receptor tyrosine kinases that are activated by triple-helical collagen. While normal DDR signalling regulates fundamental cellular processes, aberrant DDR signalling is associated with several human diseases. We previously identified GVMGFO (O is hydroxyproline) as a major DDR2 binding site in collagens I-III, and located two additional DDR2 binding sites in collagen II. Here we extend these studies to the homologous DDR1 and the identification of DDR binding sites on collagen III. Using sets of overlapping triple-helical peptides, the Collagen II and Collagen III Toolkits, we located several DDR2 binding sites on both collagens. The interaction of DDR1 with Toolkit peptides was more restricted, with DDR1 mainly binding to peptides containing the GVMGFO motif. Triple-helical peptides containing the GVMGFO motif induced DDR1 transmembrane signalling, and DDR1 binding and receptor activation occurred with the same amino acid requirements as previously defined for DDR2. While both DDRs exhibit the same specificity for binding the GVMGFO motif, which is present only in fibrillar collagens, the two receptors display distinct preferences for certain non-fibrillar collagens, with the basement membrane collagen IV being exclusively recognised by DDR1. Based on our recent crystal structure of a DDR2-collagen complex, we designed mutations to identify the molecular determinants for DDR1 binding to collagen IV. By replacing five amino acids in DDR2 with the corresponding DDR1 residues we were able to create a DDR2 construct that could function as a collagen IV receptor. 相似文献
12.
Abstract: The effects of the exposure of hippocampal slices to brief periods of ischemic-like conditions on the tyrosine phosphorylation of proteins and glycoproteins were investigated. Freshly prepared hippocampal slices contained a range of tyrosine-phosphorylated proteins and two prominent tyrosine-phosphorylated glycoproteins of apparent Mr 110,000 (GP110) and 180,000, which we have previously shown to correspond to the postsynaptic density (PSD)-associated glycoprotein PSD-GP180. When hippocampal slices were incubated in oxygenated Krebs-Ringer buffer containing 10 mM glucose (KRB), there was a transient increase in the tyrosine phosphorylation of a protein of Mr 42,000 (p42) and a pronounced increase in the tyrosine phosphorylation of GP110. After these initial changes, the tyrosine phosphorylation of all proteins remained constant for at least 60 min. In vitro “ischemia” was achieved by transferring slices that had been preincubated for 60 min in KRB to KRB that had been equilibrated with N2 instead of O2 and that did not contain glucose. Tyrosine-phosphorylated GP110 and PSD-GP180 could no longer be detected after 10 min of exposure of the slices to ischemic-like conditions. GP110 was rapidly rephosphorylated on tyrosine after transfer of slices back to oxygenated, glucose-containing buffer. In contrast, short periods of ischemia (5 or 10 min) resulted in the long-term loss of phosphotyrosine [Tyr(P)]-PSD-GP180 so that it was not detected even after 60 min of reincubation in oxygenated KRB. The sustained decrease in tyrosine phosphorylation of PSD-GP180 after ischemia was Ca2+ dependent, the levels of Tyr(P)-PSD-GP180 slowly increasing to preischemic values if Ca2+ was omitted from the incubation media. Reoxygenation of ischemic slices also resulted in the Ca2+-dependent, transient tyrosine phosphorylation of p42. The major PSD-associated, tyrosine-phosphorylated glycoprotein of molecular mass 180 kDa has recently been identified as the NR2B subunit of the NMDA receptor. The results suggest that changes in tyrosine phosphorylation after an ischemic insult may modulate the NMDA receptor or signal transduction pathways in the postsynaptic cell and are consistent with a role for tyrosine phosphorylation in the sequence of events leading to neuronal cell damage and death. 相似文献
13.
Wojciech Kedzierski Nelson Aguila-Mansilla Gerald P. Kozlowski John C. Porter 《Journal of neurochemistry》1994,62(2):431-437
Abstract: In hypothalamic cells cultured in serum-free medium, the quantity of tyrosine hydroxylase mRNA increases after treatment with an activator of the protein kinase A pathway (8-bromoadenosine cyclic AMP, 3-isobutyl-1-methylxanthine, or forskolin) or an activator of protein kinase C (12- O -tetradecanoylphorbol 13-acetate or sn -1,2-diacylglycerol). The tyrosine hydroxylase mRNA level decreases in the cells after inhibition of protein kinase C with calphostin C or after depletion of protein kinase C by extended phorbol ester treatment. These data suggest that both protein kinase pathways regulate tyrosine hydroxylase gene expression in hypothalamic cells. As simultaneous activation of both pathways has less than an additive effect on the tyrosine hydroxylase mRNA level, they appear to be interrelated. Compared with the rapid and dramatic increase of the tyrosine hydroxylase mRNA level in pheochromocytoma cells, activation of the protein kinase A or protein kinase C pathway in the cultured hypothalamic cells induces slow changes of a small magnitude in the amount of tyrosine hydroxylase mRNA. The slow regulation of tyrosine hydroxylase gene expression in hypothalamic dopaminergic neurons corresponds to the relatively high stability of tyrosine hydroxylase mRNA (half-life = 14 ± 1 h) in these cells. 相似文献
14.
Erik Berglund Pinar Akcakaya David Berglund Fredrik Karlsson Vladana Vukojević Linkiat Lee Darko Bogdanović Weng-Onn Lui Catharina Larsson Jan Zedenius Robin Fröbom Robert Bränström 《Experimental cell research》2014
DOG1, a Ca2+-activated Cl− channel (CaCC), was identified in 2004 to be robustly expressed in gastrointestinal stromal tumors (GIST). It was rapidly included as a tumor marker in routine diagnostics, but the functional role remained unknown. CaCCs are important regulators of normal physiological functions, but also implicated in tumorigenesis, cancer progression, metastasis, cell migration, apoptosis, proliferation and viability in several malignancies. We therefore investigated whether DOG1 plays a role in the three latter in GIST by utilizing in vitro cell model systems. Confocal microscopy identified different subcellular localizations of DOG1 in imatinib-sensitive and imatinib-resistant cells. Electrophysiological studies confirmed that DOG1-specific pharmacological agents possess potent activating and inhibiting properties. Proliferation assays showed small effects up to 72 h, and flow cytometric analysis of adherent cells with 7-AAD/Annexin V detected no pharmacological effects on viable GIST cells. However, inhibition of DOG1 conveyed pro-apoptotic effects among early apoptotic imatinib-resistant cells. In conclusion, DOG1 generates Cl− currents in GIST that can be regulated pharmacologically, with small effects on cell viability and proliferation in vitro. Inhibition of DOG1 might act pro-apoptotic on some early apoptotic GIST cell populations. Further studies are warranted to fully illuminate the function of DOG1 and its potential as therapeutic target. 相似文献
15.
To investigate the role of the intracellular C-terminal tail of the rat metabotropic glutamate receptor 1a (mGlu1a) in receptor regulation, we constructed three C-terminal tail deletion mutants (Arg847stop, DM-I; Arg868stop, DM-II; Val893stop, DM-III). Quantification of glutamate-induced internalization provided by ELISA indicated that DM-III, like the wild-type mGlu1a, underwent rapid internalization whilst internalization of DM-I and DM-II was impaired. The selective inhibitor of protein kinase C (PKC), GF109203X, which significantly reduced glutamate-induced mGlu1a internalization, had no effect on the internalization of DM-I, DM-II, or DM-III. In addition activation by carbachol of endogenously expressed M1 muscarinic acetylcholine receptors, which induces PKC- and Ca2+-calmodulin-dependent protein kinase II-dependent internalization of mGlu1a, produced negligible internalization of the deletion mutants. Co-expression of a dominant negative mutant form of G protein-coupled receptor kinase 2 (DNM-GRK2; Lys220Arg) significantly attenuated glutamate-induced internalization of mGlu1a and DM-III, whilst internalization of DM-I and DM-II was not significantly affected. The glutamate-induced internalization of mGlu1a and DM-III, but not of DM-I or DM-II, was inhibited by expression of DNM-arrestin [arrestin-2(319-418)]. In addition glutamate-induced rapid translocation of arrestin-2-Green Fluorescent Protein (arr-2-GFP) from cytosol to membrane was only observed in cells expressing mGlu1a or DM-III. Functionally, in cells expressing mGlu1a, glutamate-stimulated inositol phosphate accumulation was increased in the presence of PKC inhibition, but so too was that in cells expressing DM-II and DM-III. Together these results indicate that different PKC mechanisms regulate the desensitization and internalization of mGlu1a. Furthermore, PKC regulation of mGlu1a internalization requires the distal C terminus of the receptor (Ser894-Leu1199), whilst in contrast glutamate-stimulated GRK- and arrestin-dependent regulation of this receptor depends on a region of 25 amino acids (Ser869-Val893) in the proximal C-terminal tail. 相似文献
16.
17.
The introduction of anti-angiogenic drugs especially tyrosine kinase inhibitors (TKIs) was a breakthrough in the treatment of renal cell carcinoma (RCC). Although TKIs have significantly improved outcome in patients with metastatic disease, the majority still develop resistance over time. Because different combinations and sequences of TKIs are tested in clinical trials, resistance patterns and mechanisms underlying this phenomenon should be thoroughly investigated. From a clinical point of view, resistance occurs either as a primary phenomenon (intrinsic) or as a secondary phenomenon related to various escape/evasive mechanisms that the tumor develops in response to vascular endothelial growth factor (VEGF) inhibition. Intrinsic resistance is less common, and related to the primary redundancy of available angiogenic signals from the tumor, causing unresponsiveness to VEGF-targeted therapies. Acquired resistance in tumors is associated with activation of an angiogenic switch which leads to either upregulation of the existing VEGF pathway or recruitment of alternative factors responsible for tumor revascularization. Multiple mechanisms can be involved in different tumor settings that contribute both to evasive and intrinsic resistance, and current endeavor aims to identify these processes and assess their importance in clinical settings and design of pharmacological strategies that lead to enduring anti-angiogenic therapies. 相似文献
18.
Stephanie Schwalm Josef Pfeilschifter Andrea Huwiler 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(1):239-250
Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that acts either on G protein-coupled S1P receptors on the cell surface or via intracellular target sites. In addition to the well established effects of S1P in angiogenesis, carcinogenesis and immunity, evidence is now continuously accumulating which demonstrates that S1P is an important regulator of fibrosis. The contribution of S1P to fibrosis is of a Janus-faced nature as S1P exhibits both pro- and anti-fibrotic effects depending on its site of action. Extracellular S1P promotes fibrotic processes in a S1P receptor-dependent manner, whereas intracellular S1P has an opposite effect and dampens a fibrotic reaction by yet unidentified mechanisms. Fibrosis is a result of chronic irritation by various factors and is defined by an excess production of extracellular matrix leading to tissue scarring and organ dysfunction. In this review, we highlight the general effects of extracellular and intracellular S1P on the multistep cascade of pathological fibrogenesis including tissue injury, inflammation and the action of pro-fibrotic cytokines that stimulate ECM production and deposition. In a second part we summarize the current knowledge about the involvement of S1P signaling in the development of organ fibrosis of the lung, kidney, liver, heart and skin. Altogether, it is becoming clear that targeting the sphingosine kinase-1/S1P signaling pathway offers therapeutic potential in the treatment of various fibrotic processes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research. 相似文献
19.
Human microvascular endothelial cells immortalized with human telomerase catalytic protein: a model for the study of in vitro angiogenesis 总被引:12,自引:0,他引:12
Human microvascular endothelial cell-1 (HMEC-1) generated by transfection with SV40 large T antigen has been the prevailing model for in vitro studies on endothelium. However, the transduction of SV40 may lead to unwanted cell behaviors which are absent in primary cells. Thus, establishing a new microvascular endothelial cell line, which is capable of maintaining inherent features of primary endothelial cells, appears to be extremely important. Here, we immortalized primary human microvascular endothelial cells (pHMECs) by engineering the human telomerase catalytic protein (hTERT) into the cells. Endothelial cell-specific markers were examined and the angiogenic responses were characterized in these cells (termed as HMVECs, for human microvascular endothelial cells). We found that VEGF receptor 2 (Flk-1/KDR), tie1, and tie2 expression is preserved in HMVEC, whereas Flk-1/KDR is absent in HMEC-1. In addition, HMVEC showed similar angiogenic responses to VEGF as HMEC-1. Furthermore, the HMVEC line was found to generate a prominent angiogenic response to periostin, a potent angiogenic factor identified recently. The data indicate that HMVEC may serve as a suitable in vitro endothelium model. 相似文献
20.
Li RJ Qiu SD Wang HX Tian H Wang LR Huo YW 《Apoptosis : an international journal on programmed cell death》2008,13(8):959-971
Androgen receptor (AR) mediates a wide range of cellular processes, such as proliferation, differentiation and apoptosis.
Here we sought to identify whether AR was located in pancreatic beta-cells and investigate its functions in type 1 diabetes
induced by multiple low doses of streptozotocin. Double/triple immunofluorescence, Western blot and semi-quantitative RT-PCR
were carried out to determine variances of AR expression in beta-cells and correlation between AR and apoptosis/proliferation
of beta-cells with progress of diabetes. In addition, in vitro primary beta-cells from control mice were cultured for 3 days
or 6 days with compound stimulation in order to further identify effect of AR on beta-cell apoptosis and proliferation. AR
expression in beta-cells peaked in control and 1-day diabetic mice, gradually and significantly decreased, even disappeared
in diabetic mice with progress of diabetes. TUNEL-positive beta-cells were concomitant with overexpression of AR, and Ki67-positive
beta-cells showed extremely weak, even negative AR staining. In vitro, AR could mediate beta-cell apoptosis, and AR antagonist
flutamide contributed to beta-cell proliferation. In conclusion, AR is abundantly expressed in pancreatic beta-cell cytoplasm
of control mice. With progress of type 1 diabetes, decrement of AR expression in diabetic mice contributes to prohibit beta-cells
from apoptosis, and is strongly associated with beta-cell proliferation. 相似文献