首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract The laborious process of manual seagrass transplanting has often limited the size of seagrass restoration efforts. This study tested the efficiency of a mechanized planting boat, previously used for transplanting Halodule wrightii, relative to manual transplanting methods for establishing Zostera marina in Chesapeake Bay. Eelgrass planting was conducted at two sites, one each in the Rappahannock and James rivers, in October 2001. The methods were evaluated by three criteria: (1) initial planting success = proportion of attempted planting units (PUs) initially established (number confirmed in sediment by divers/number attempted); (2) survival = proportion of the initially established PUs persisting over 1, 4, and 24 weeks; and (3) efficiency = labor (in person·seconds) invested in each surviving PU. Initial planting success was significantly lower for the planting boat (24 and 56% at the Rappahannock and James sites, respectively) than for manual transplanting (100% at both sites). At the Rappahannock site, survival of initially established PUs declined over time for both methods, but while mean survival was always higher for manually planted rows, differences in survival between methods were not statistically significant. At the James site, survival to 1 and 4 weeks was significantly lower for the machine than for the manual method, but survival to 24 weeks was not significantly different. While the machine was able to attempt PUs faster than the manual method (2.2 s/PU vs. 5.8 s/PU, respectively), this speed was offset by poorer planting success rates, resulting in a much greater total labor investment for each machine‐planted PU that persisted to 24 weeks than for each similarly persisting manually planted PU (40.6 person·seconds/PU and 22.4 person·seconds/PU, respectively, averaged across sites). In summary, those PUs successfully planted by the machine survived similarly to PUs planted by hand, but as a result of poorer initial planting success, the machine required a greater investment of labor and plant donor stock for each PU surviving to 24 weeks. Therefore, in its tested configuration this planting boat is not a significant improvement over the manual method for transplanting eelgrass.  相似文献   

2.
    
The Baja California peninsula represents a biogeographical boundary contributing to regional differentiation among populations of marine animals. We investigated the genetic characteristics of perennial and annual populations of the marine angiosperm, Zostera marina, along the Pacific coast of Baja California and in the Gulf of California, respectively. Populations of Z. marina from five coastal lagoons along the Pacific coast and four sites in the Gulf of California were studied using nine microsatellite loci. Analyses of variance revealed significant interregional differentiation, but no subregional differentiation. Significant spatial differentiation, assessed using θST values, was observed among all populations within the two regions. Z. marina populations along the Pacific coast are separated by more than 220 km and had the greatest θST (0.13–0.28) values, suggesting restricted gene flow. In contrast, lower but still significant genetic differentiation was observed among populations within the Gulf of California (θST = 0.04–0.18), even though populations are separated by more than 250 km. This suggests higher levels of gene flow among Gulf of California populations relative to Pacific coast populations. Direction of gene flow was predominantly southward among Pacific coast populations, whereas no dominant polarity in the Gulf of California populations was observed. The test for isolation by distance (IBD) showed a significant correlation between genetic and geographical distances in Gulf of California populations, but not in Pacific coast populations, perhaps because of shifts in currents during El Niño Southern Oscillation (ENSO) events along the Pacific coast.  相似文献   

3.
    
Ecosystem restoration is often costly, but can be effective at increasing biodiversity and ecosystem services. We used a case study—reseeding seagrass to a coastal lagoon—to demonstrate the value of enhanced ecosystem services as a result of restoration. We modeled the recovery of areal plant coverage in a system where seagrasses were lost due to disease and disturbance, and estimated the value of the returned functions of nitrogen removal and carbon sequestration. We estimated, as of 2010, that this restoration removes 170 ton of nitrogen per year via denitrificiation and sequesters carbon at a rate of 630 tons carbon per year in the sediment. Further, we estimated that natural recovery would take more than 100 years to reach the areal coverage achieved by restoration using seeds in just 10 years. Restoration enhanced this recovery, and the earlier establishment of plants results in a net gain of at least 4,100 ton of nitrogen removed from the system via denitrification and 15,000 ton of carbon sequestered in the sediment. These services have significant ecological and societal value.  相似文献   

4.
Juvenile smelt, Osmerus mordax, were collected from four eelgrass, Zostera marina, beds in the Great Bay Estuary, two within Great Bay and two located nearer the coast. Lapillar otoliths were used to estimate the ages of the smelt and to calculate daily somatic growth based on the widths of otolith increments. Smelt collected from the Bay sites were consistently younger and shorter in total length than smelt collected from the coastal sites. A repeated measures analysis of variance found significant differences among growth trajectories of smelt grouped by their dates of birth.  相似文献   

5.
We studied variability in the abundance of small individuals of an invasive mussel (Musculista senhousia) across the depth distribution of a native marine angiosperm, eelgrass (Zostera marina). Adult mussels and eelgrass have a disjunct local distribution, each limiting the other in complex ways. To assess whether eelgrass also influenced the distribution of juvenile mussels, we sampled inside and outside eelgrass beds in one site in Mission Bay and two in San Diego Bay, California, USA. We sampled mussels in size classes 0.26–0.50 mm, 0.51–1.00 mm, 1.10–2.00 mm and > 2.00 mm from September 1997 to April 1999. We also monitored gonad development in larger mussels and in situ growth of mussels ≤ 2 mm tagged with the chemical marker calcein. Spatial and temporal variations in mussel abundances were high but seasonal patterns were roughly similar at San Diego Bay sites; very few mussels were found in Mission Bay. Mussels with full gonads were found year‐round in San Diego Bay, as were mussels in the smallest size class (with a large peak in fall and a smaller secondary one in spring), suggesting that many of the smallest mussels represent recruitment. The observation that most, although not all, tagged mussels increased in size provides further support for recruitment. Some of the highest numbers of mussels in the smallest size class were found inside eelgrass beds, indicating that eelgrass does not restrict and may actually enhance the distribution of very small mussels. The disjunct distribution of adult mussels and eelgrass thus is apparently established primarily postrecruitment. M. senhousia is capable of year‐round reproduction, recruitment and growth, and thus is poised to preempt space from eelgrass following any disturbance that results in eelgrass declines, such as habitat fragmentation, eutrophication, or disease.  相似文献   

6.
    
The algicidal and growth-inhibiting bacteria associated with seagrasses and macroalgae were characterized during the summer of 2012 and 2013 throughout Puget Sound, WA, USA. In 2012, Heterosigma akashiwo-killing bacteria were observed in concentrations of 2.8 × 106 CFU g−1 wet in the outer organic layer (biofilm) on the common eelgrass (Zostera marina) in north Padilla Bay. Bacteria that inhibited the growth of Alexandrium tamarense were detected within the biofilm formed on the eelgrass canopy at Dumas Bay and North Bay at densities of ∼108 CFU g−1 wet weight. Additionally, up to 4100 CFU mL−1 of algicidal and growth-inhibiting bacteria affecting both A. tamarense and H. akashiwo were detected in seawater adjacent to seven different eelgrass beds. In 2013, H. akashiwo-killing bacteria were found on Z. marina and Ulva lactuca with the highest densities of ∼108 CFU g−1 wet weight at Shallow Bay, Sucia Island. Bacteria that inhibited the growth of H. akashiwo and A. tamarense were also detected on Z. marina and Z. japonica at central Padilla Bay. Heterosigma akashiwo cysts were detected at a concentration of 3400 cysts g−1 wet weight in the sediment from Westcott Bay (northern San Juan Island), a location where eelgrass disappeared in 2002. These findings provide new insights on the ecology of algicidal and growth-inhibiting bacteria, and suggest that seagrass and macroalgae provide an environment that may influence the abundance of harmful algae in this region. This work highlights the importance of protection and restoration of native seagrasses and macroalgae in nearshore environments, in particular those regions where shellfish restoration initiatives are in place to satisfy a growing demand for seafood.  相似文献   

7.
Many functionally hermaphroditic plants have evolved mechanisms to reduce interference between the sex functions and to optimize reproductive output. In addition to physical mechanisms such as the spatial (herkogamy) and temporal (dichogamy) separation of male and female functions, plasticity in sex expression by means of mate-recognition (flexible mating) could be important in plants with variable access to cross-pollen. This applies particularly to clonal plants because of their modular growth form. We experimentally tested for the effects of pollen source and vegetative neighbourhood on instantaneous sex ratio and seed production in the self-compatible clonal marine angiosperm Zostera marina L. To this end, we exposed the (monoecious) flowering shoots to self and cross-pollen and to neighbourhoods of their own and a mix of foreign vegetative shoots. Flowering shoots that had been exposed to cross-pollen showed (1) a significantly lower female/male ratio at peak flowering, evidence for mate-recognition, and (2) a significantly higher seed set by the end of the season. Both effects were independent of the genetic composition of their vegetative neighbourhood. The results suggest that Z. marina maintains a cryptic self-incompatibility system not previously described for angiosperms with sub-aqueous pollination. In Z. marina, and possibly other self-compatible clonal plant species, mate-recognition could be a means of increasing the out-crossing probability for flowering shoots with central positions within their clone.  相似文献   

8.
A bacterial strain named AB-4 showing algicidal activity against Chattonella marina was isolated from coastal water of ULjin, Republic of Korea. The isolated strain was identified as Bacillus sp. by culture morphology, biochemical reactions, and homology research based on 16S rDNA. The bacterial culture led to the lysis of algal cells, suggesting that the isolated strain produced a latent algal-lytic compound. Amongst changes in algicidal activity by different culture filtrate volumes, the 10% (100 μl/ml) concentration showed the biggest change in algicidal activity; there, estimated algicidal activity was 95%. The swimming movements of Chattonella marina cells were inhibited because of treatment of the bacterial culture; subsequently, Chattonella marina cells became swollen and rounded. With longer exposure time, algal cells were disrupted and cellular components lost their integrity and decomposed. The released algicide(s) were heat-tolerant and stable in pH variations, except pH 3, 4, and 5. Culture filtrate of Bacillus sp. AB-4 was toxic against harmful algae bloom (HAB) species and nontoxic against livefood organisms. Bacillus sp. AB-4 showed comparatively strong activity against Akashiwo sanguinea, Fibriocapsa japonica, Heterosigma akashiwo, and Scrippsiella trochoidea. These results suggest that the algicidal activity of Bacillus sp. AB-4 is potentially useful for controlling outbreaks of Chattonella marina.  相似文献   

9.
    
This is the first study investigating the plant–herbivore interaction between Sarpa salpa, which has overgrazed seagrass transplants in Portugal, and the seagrasses Cymodocea nodosa, Zostera marina and Zostera noltii, which have been considered for restoration. When offered the choice between the three seagrasses in outdoor tanks, adult S. salpa clearly preferred Z. noltii. Testing the seagrasses separately, mean ± s.d. feeding rates ranged from 21 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. marina to 32 ± 9 g seagrass fresh mass kg?1 fish mass day?1 for C. nodosa and 40 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. noltii (temperature = 16° C). Food‐processing rate in S. salpa did not differ between seagrasses, and there was no evidence of a regulation of processing rate according to food intake. Seagrasses differed substantially in nitrogen content and C:N, with C. nodosa containing the highest nitrogen content and lowest C:N (2·5 ± 0·1% and 14·0 ± 1·0), followed by Z. noltii (2·1 ± 0·1% and 17·0 ± 1·0) and Z. marina (1·4 ± 0·1% and 26·0 ± 2·0). Food‐processing rate in S. salpa and the nutritional value of the seagrasses were not correlated with the observed feeding preference and rate. The study suggests that C. nodosa and Z. marina are less at risk of overgrazing by S. salpa and might thus be preferable to Z. noltii for seagrass restoration in areas with noticeable abundances of this fish.  相似文献   

10.
    
Access to high-quality food is critical for long-distance migrants to provide energy for migration and arrival at breeding grounds in good condition. We studied effects of changing abundance and availability of a marine food, common eelgrass (Zostera marina L.), on an arctic-breeding, migratory goose, black brant (Brant bernicla nigricans Lawrence 1846), at a key non-breeding site, Bahía San Quintín, Mexico. Eelgrass, the primary food of brant, is consumed when exposed by the tide or within reach from the water's surface. Using an individual-based model, we predicted effects of observed changes (1991–2013) in parameters influencing food abundance and availability: eelgrass biomass (abundance), eelgrass shoot length (availability, as longer shoots more within reach), brant population size (availability, as competition greater with more birds), and sea level (availability, as less food within reach when sea level higher). The model predicted that the ability to gain enough energy to migrate was most strongly influenced by eelgrass biomass (threshold January biomass for migration = 60 g m−2 dry mass). Conversely, annual variation in population size (except for 1998), was relatively low, and variation in eelgrass shoot length and sea level were not strongly related to ability to migrate. We used observed data on brant body mass at Bahía San Quintín and annual survival to test for effects of eelgrass biomass in the real system. The lowest observed values of body mass and survival were in years when biomass was below 60 g m−2, although in some years of low biomass body mass and/or survival was higher. This suggests that the real birds may have some capacity to compensate to meet their energy demands when eelgrass biomass is low. We discuss consequences for brant population trends and conservation.  相似文献   

11.
  总被引:3,自引:0,他引:3  
Sudden events of seagrass die‐off have been suggested to be induced by invasion of the phytotoxin sulphide under environmental stress generating low oxygen supply in seagrass tissues. Laboratory experiments were conducted with eelgrass (Zostera marina L.) to measure intra‐plant changes in oxygen and sulphide by means of microelectrodes at different oxygen concentrations in the water column. The objectives were to examine whether sulphide intrusion into seagrass tissues can be induced, to determine the role of plant oxygen status for sulphide intrusion and to determine how fast internal sulphide pools are depleted after internal oxygen supplies have been restored. Under conditions with oxygen partial pressures (pO2) above 7.4 kPa (> 35% of air saturation) within eelgrass rhizomes or meristematic tissues no intrusion of sulphide occurred in spite of high sediment concentrations of gaseous sulphide (> 1000 µm ). Lack of sulphide intrusion at high internal pO2 suggested that oxygen release from the roots ensured complete re‐oxidation of sulphide in the rhizosphere. Under oxygen stress, however, the experiments clearly demonstrated intrusion of sulphide in eelgrass rhizomes and meristematic tissues. Rates of sulphide intrusion were controlled by internal pO2, which in turn was controlled by water column oxygen concentrations. Maximum internal sulphide content reached 325 µm which by far exceeded the 1–10 µm known to inhibit mitochondrial activity in eukaryotic cells. Sulphide and low levels of oxygen could coexist in the eelgrass tissues reflecting fast internal transport of sulphide and slow rates of sulphide re‐oxidation. Upon re‐establishment of high internal oxygen concentrations the depletion of the sulphide pool was slow (half‐life = 20–30 min) indicating, that sulphide re‐oxidation within the eelgrass tissue was not bacterially or enzymatically facilitated but occurred by simple chemical oxidation. The results of this study are consistent with the proposed detrimental role of sulphide intrusion in events of sudden seagrass die‐off.  相似文献   

12.
    
As seagrass bed restoration by seeding becomes more common, it is necessary to develop a simple and reliable method to improve the efficiency of seed-based restoration. In this study, we describe a novel method using seed ball burial for eelgrass restoration. Using this method, seeds were wrapped in a wet mud ball, which represented a transplant unit, and the balls were then buried in the sediment. Three experiments (proof of concept study, main study, and large-scale restoration) were conducted to test this method at three degraded sites (Rizhao, Qingdao, and Tangshan) with different environmental conditions. The density of seedlings and seedling shoots was 54 and 110 per m2, respectively, in Rizhao, a site with coarser sediment and higher temperatures. Seedling survival in Qingdao reached 46.67 ± 9.46%. Relatively low seedling survival (26.67 ± 7.03%) in Tangshan was induced by local waves and currents. Seedling survival was also low (ca. 15% in April and 2% in July) at the large-scale restoration site , reflecting a mismatch between the environment at this site and the seed ball restoration method. In conclusion, our study provides evidence of the effectiveness of a novel seagrass seed planting method referred to as seed balls.  相似文献   

13.
    
Predation is a key determinant of community structure and function, and thus should play a central role in successful ecological restoration strategies. The bay scallop, Argopecten irradians, was once abundant in the coastal bays of Virginia, U.S.A., until the complete loss of their eelgrass habitat, Zostera marina, in the 1930s. With the successful restoration of Z. marina in these coastal bays, attention has turned to reintroducing A. irradians with the intent of producing a self‐sustaining population. The success of this effort requires an understanding of the sources and degree of natural mortality that A. irradians experiences throughout their ontogeny. The objectives of this study were to: (1) quantify predatory mortality during two successive life history stages of A. irradians, in both spring and fall spawns and (2) identify possible predators of A. irradians in the Virginia coastal bays. We conducted tethering experiments to quantify the proportional losses due to predation, and used otter trawls and suction samples to characterize the predator community over two consecutive years. Losses due to predation ranged from 4 to 80% per day, with smaller juveniles (<15 mm shell height) experiencing greater mortality in 2013, and larger juveniles (>20 mm shell height) in 2014, which we infer is driven by the absence and presence of adult blue crabs in 2013 and 2014, respectively. We propose that managers should look toward relatively inexpensive predator surveys to best judge both when and at what size restored species should be introduced into the wild.  相似文献   

14.
    
Bacteria in the phycosphere have a unique ecological relationship with host algae due to their utilization of algal extracellular products as nutrients. Some bacteria control the growth of algal cells and even lyse them. The diversity of bacteria and their community dynamics in the phycosphere of microalgae are still relatively little understood, especially of those associated with red tide-causing algae. In this study, scanning electron microscope (SEM) images of algal cell morphology revealed that the phycosphere bacteria of the red tide-causing algae, Skeletonema costatum and Scrippsiella trochoidea, could lyse them within 72 h. The community level physiology of the algicidal bacteria was studied using Biolog ECO microplates, a common method for the ecological study of microbial communities. The average well color development (AWCD) values of bacteria in the phycospheres of both species were low, indicating that the bacteria had low metabolic activity overall. The diversity indices were both lower than the bacterial diversity from natural environments. However, the bacteria associated with S. trochoidea demonstrated a higher AWCD value and diversity than those in the phycosphere of S. costatum. The utilization of carbon sources significantly changed at different lytic times, reflecting that the bacterial community structure changed during the algae-lysing process. These results revealed that the bacterial communities in phycospheres had a simple structure and low diversity. When the balance between algae and bacteria broke down, the total bacterial density increased while the algicidal bacteria accumulated and became the dominant species, changing the bacterial community structure in this micro-ecosystem.  相似文献   

15.
    
Spiny-surfaced species of Prorocentrum form harmful algal blooms, and its taxonomic identity is obscure due to the size and shape variability. Molecular phylogenies reveal two major clades: one for P. cordatum with sequences mainly retrieved as P. minimum, and the other for P. shikokuense with sequences also retrieved as P. dentatum and P. donghaiense. Several closely related clades still need to be characterized. Here, we provide nuclear SSU and LSU rRNA genes, and nuclear ITS region (ITS1-5.8S gene-ITS2) sequences of the strain CCMP3122 isolated from Florida (initially named P. donghaiense) and strains Prorocentrum sp. RCC6871–2 from the Ross Sea, Antarctica. We describe Prorocentrum thermophilum sp. nov. based on the strain CCMP3122, a species also distributed in the open waters of the Gulf of Mexico, New Zealand, and the Arabian Gulf; and Prorocentrum criophilum sp. nov. based on the strain RCC6872, which is distributed in the Antarctic Ocean and Arctic Sea. Prorocentrum thermophilum is roundish (~14 μm long, ~12 μm wide), with an inconspicuous anterior spine-like prolongation under light microscopy, valves with tiny, short knobs (5–7 per μm2), and several (<7) large trichocyst pores (~0.3 μm) in the right valve, as well as smaller pores (~0.15 μm). Prorocentrum criophilum is round in valve view (~11 μm long, 10 μm wide) and asymmetrically roundish in lateral view, the periflagellar area was not discernible under light microscopy, valves with very tiny, short knobs (6–10 per μm2), and at least 12 large pores in the right valve. Other potentially undescribed species of spiny-surfaced Prorocentrum are discussed.  相似文献   

16.
    
In response to systemic losses of submerged aquatic vegetation (SAV) in the Chesapeake Bay (east coast of North America), the U.S. Environmental Protection Agency's (EPA) Chesapeake Bay Program (CBP) and Maryland Department of Natural Resources (MD DNR) have considered SAV restoration a critical component in Bay restoration programs. In 2003, the CBP created the “Strategy to Accelerate the Protection and Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay” in an effort to increase SAV area. As part of this strategy, large‐scale eelgrass (Zostera marina) restoration efforts were initiated in the Patuxent and Potomac Rivers in Maryland. From 2004 to 2007, nearly 4 million Z. marina seeds were dispersed over 10 ha on the Patuxent River and almost 9 million seeds over 16 ha on the Potomac River. Z. marina seedling establishment was consistent throughout the project (<4%); however, restored eelgrass survival was highly dependent on restoration site. Restoration locations on the Patuxent River experienced initial Z. marina seedling germination, but no long‐term plant survival. Restored Z. marina on the Potomac River has persisted and expanded, both vegetatively and sexually, beyond initial seeding areas. Healthy Z. marina beds now cover approximately five acres of the Potomac River bottom for the first time in decades. The differential success of Z. marina restoration efforts in the two rivers is evidence for the necessity of carefully considering site‐specific characteristics when using large‐scale seeding methods to achieve successful SAV restoration.  相似文献   

17.
BACKGROUND AND AIMS: Seagrasses are important facilitator species in shallow, soft-bottom marine environments worldwide and, in many places, are threatened by coastal development and eutrophication. One narrow-leaved species (Zostera marina) and one wide-leaved species, variously designated as Z. marina, Z. pacifica or Z. asiatica, are found off the California Channel Islands and adjacent California-Mexico coast. The aim of the present study was to confirm species identification genetically and to link patterns of genetic diversity, connectivity and hybridization among and within the populations with historical sea levels (Ice Age) or the contemporary environment. METHODS: Samples (n = 11-100) were collected from 28 sites off five California Channel Islands and six sites off the adjacent coast of southern California and Baja California, Mexico. DNA polymorphisms of the rDNA-ITS (internal transcribed spacer) cistron (nuclear), the matK intron (chloroplast) and nine microsatellite loci (nuclear) were examined in a population genetic and phylogeographic context. KEY RESULTS: All wide-leaved individuals were Z. pacifica, whereas narrow-leaved forms were Z. marina. Microsatellite genotypes were consistent with hybridization between the two species in three populations. The present distribution of Z. pacifica follows a glacial age land mass rather than present oceanographic regimes, but no link was observed between the present distribution of Z. marina and past or present environments. Island populations of Z. marina often were clonal and characterized by low genotypic diversity compared with populations along the Baja California coast. The high level of clonal connectivity around Santa Catalina Island indicated the importance of dispersal and subsequent re-establishment of vegetative fragments. CONCLUSIONS: The pristine environmental conditions of offshore islands do not guarantee maximum genetic diversity. Future restoration and transplantation efforts of seagrasses must recognize cryptic species and consider the degree of both genetic and genotypic variation in candidate donor populations.  相似文献   

18.
    
The use of aquaculture systems to grow the seagrass Zostera marina (eelgrass) from seeds for restoration projects was evaluated through laboratory and mesocosm studies. Along the mid‐Atlantic coast of North America Z. marina seeds are shed from late spring through early summer, but seeds typically do not begin to germinate until the late fall. Fall is the optimal season to plant both seeds and shoots in this region. We conducted studies to determine if Z. marina seeds can be induced to germinate in the summer and seedlings grown in mesocosms to a size sufficiently large enough for out‐planting in the fall. Seeds in soil‐less culture germinated in the summer when held at 14°C, with percent germination increasing with lower salinities. Cold storage (4°C) of seeds prior to planting in sediments enhanced germination and seedling survival. Growth rates of seedlings were significantly higher in nutrient enriched estuarine sediments. Results from preliminary studies were used in designing a large‐scale culture project in which 15,000 shoots were grown and out‐planted into the Potomac River estuary in the Chesapeake Bay and compared with an equal number of transplanted shoots. These studies demonstrate that growing Z. marina from seeds is an alternative approach to harvesting plants from donor beds when vegetative shoots are required for restoration projects.  相似文献   

19.
基于大叶藻成苗率的新型海草播种技术评价   总被引:1,自引:0,他引:1  
蛤蜊播种技术是一种新型海草播种技术,该技术中,种子通过糯米糊粘在蛤蜊贝壳上,随蛤蜊穴居被埋入底质。为评价蛤蜊和糯米糊对种子成苗率的影响,以菲律宾蛤仔(Ruditapes philippinarum)和大叶藻(Zostera marina)种子为试验对象,设置了直接播撒种子(A1组)、直接埋种(A2组)、包埋糯米后播撒(B1组)、包埋糯米后埋入底质(B2组)、蛤蜊播种(C)5种处理,每种处理设置3个重复,在实验室的水槽中对其进行试验。结果表明:糯米糊对种子萌发有负面影响,但由于蛤蜊的行为使底质具有透气性,减轻了糯米糊对种子萌发的影响,种子成苗率可达到23.2%;海区试验中利用蛤蜊播种的两个样方中的成苗率分别为19.1%和9.9%。试验表明,蛤蜊播种技术适合作为一种经济、有效的播种技术用于海区海草床的建立和修复。  相似文献   

20.
溶藻细菌的生态学作用及其生物量检测方法   总被引:2,自引:0,他引:2  
有害藻类水华已成为当今世界水体普遍存在的环境问题,溶藻细菌作为水华和赤潮防治的可能生物,引起了众多科研人员的关注。介绍了溶藻细菌的研究概况,重点对溶藻细菌的生态学作用及其生物量的检测方法进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号