首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The Science, Technology, Engineering, Arts, and Mathematics (STEAM) movement argues that broad-based education that promotes creativity recognizes student learning diversity, increases student engagement and can potentially enhance Science, Technology, Engineering, and Mathematics (STEM) learning by embracing cross-cutting translational skills common to STEM and arts and design disciplines. This article describes and discusses the advocacy strategy designed at Rhode Island School of Design to promote STEAM education policy. Recommendations presented include (a) recognition of the arts (and design) as core subjects alongside STEM; (b) addressing issues of equity/resources to deliver arts education; (c) calling for research into potential outcomes of STEAM educational models; and (d) funding for professional development and latitude for teachers to explore interdisciplinary learning.  相似文献   

2.
ABSTRACT

Recent advances in arts education policy, as outlined in the latest National Core Arts Standards, advocate for bringing digital media into the arts education classroom. The promise of such Science, Technology, Engineering, Arts, and Mathematics (STEAM)–based approaches is that, by coupling Science, Technology, Engineering, and Mathematics (STEM) and the arts, new understandings and artifacts emerge that transcend either discipline. Evidence of this can be seen through fundamental shifts in both fields; in the arts, artists are expanding the creative potential for design through computational flexibility, which affords artists the ability to exceed the limitations of their tools. The infusion of the arts into STEM has shown to be equally transformative, with the emergence of tools and communities that not only engender new content understandings but also invite participation from populations historically underrepresented in STEM fields. Drawing on over a decade of research at the intersection of the arts, creativity, and new technologies from the Creativity Labs at Indiana University, this article theorizes the learning that takes place at effective couplings of STEAM to assist today's educators in realizing the potential for transformative experiences for learners of all levels. This article provides a synthesis of this past work across two compelling cases of STEAM-based tools, materials, and activities (i.e., the media-rich programming environment Scratch as well as the work the LilyPad Arduino used to create electronic textiles), incorporating findings from more than 50 peer-reviewed papers and books, and conceptually outlines an approach to “gathering STEAM” in arts education classrooms today. Implications are explored for policy makers in teacher education to think about preservice curriculum and field experiences; policy makers in arts education to think about tools needed in classrooms today; as well as how art education can play a critical role in STEM disciplines and offer solutions to address STEM pipeline challenges. Such efforts extend current and prior discussions in the arts education landscape about the use of new technologies, and draw our attention to how new technologies can be leveraged for artistic expression.  相似文献   

3.
The use of theory and simulation in undergraduate education in biochemistry, molecular biology, and structural biology is now common, but the skills students need and the curriculum instructors have to train their students are evolving. The global pandemic and the immediate switch to remote instruction forced instructors to reconsider how they can use computation to teach concepts previously approached with other instructional methods. In this review, we survey some of the curricula, materials, and resources for instructors who want to include theory, simulation, and computation in the undergraduate curriculum. There has been a notable progression from teaching students to use discipline-specific computational tools to developing interactive computational tools that promote active learning to having students write code themselves, such that they view computation as another tool for solving problems. We are moving toward a future where computational skills, including programming, data analysis, visualization, and simulation, will no longer be considered an optional bonus for students but a required skill for the 21st century STEM (Science, Technology, Engineering, and Mathematics) workforce; therefore, all physical and life science students should learn to program in the undergraduate curriculum.  相似文献   

4.
Close observation is central to both art and science as practitioners in both disciplines describe, compare, and seek to understand or interpret the natural world. Indeed, as the artist and writer Guy Davenport noted, “The vision by which we discover the hidden in nature is sometimes called science, sometimes called art.” In the last decade, the movement to integrate science, technology, engineering, and mathematics with arts and humanities (i.e., STEAM learning) has gained traction in K–12 education. A recent National Academies report (2018) examines the case for integrating humanities and the arts in undergraduate STEM education. Microscopy provides an excellent vehicle for engaging all kinds of students in integrative (STEAM) learning about biology and for encouraging them to observe the world closely. In this essay adapted from my keynote address to the American Microscopical Society in 2020, I highlight activities and approaches that use microscopy to engage learners of all kinds, examine how using microscopes changes students’ attitudes about science and biology, and explore the intersection of microscopy and visual art.  相似文献   

5.
The U.S. currently enjoys a position among the world’s foremost innovative and scientifically advanced economies but the emergence of new economic powerhouses like China and India threatens to disrupt the global distribution of innovation and economic competitiveness. Among U.S. policy makers, the promotion of advanced education, particularly in the STEM (Science, Technology, Engineering and Mathematics) fields, has become a key strategy for ensuring the U.S.’s position as an innovative economic leader. Since approximately one third of science and engineering post-graduate students in the U.S. are foreign born, the future of the U.S. STEM educational system is intimately tied to issues of global competitiveness and American immigration policy. This study utilizes a combination of national education data, a survey of foreign-born STEM graduate students, and in-depth interviews of a sub-set of those students to explain how a combination of scientists’ and engineers’ educational decisions, as well as their experience in school, can predict a students’ career path and geographical location, which can affect the long-term innovation environment in their home and destination country. This study highlights the fact that the increasing global competitiveness in STEM education and the complex, restrictive nature of U.S. immigration policies are contributing to an environment where the American STEM system may no longer be able to comfortably remain the premier destination for the world’s top international students.  相似文献   

6.
Undergraduate students from underrepresented backgrounds (e.g., Black, Indigenous, and people of color [BIPOC], members of the Deaf community, people with disabilities, members of the 2SLGBTQIA+ community, from low-income backgrounds, or underrepresented genders) continue to face exclusion and marginalization in higher education. In this piece, authored and edited by a diverse group of Science, Technology, Engineering, and Mathematics (STEM) scholars, we present 10 simple rules for succeeding as an underrepresented STEM undergraduate student, illuminating the “hidden curriculum” of STEM specifically as it relates to the underrepresented undergraduate experience. Our rules begin by encouraging students to embrace their own distinct identities and scientific voices and explain how students can overcome challenges unique to underrepresented students throughout their undergraduate degrees. These rules are derived from a combination of our own experiences navigating our undergraduate STEM degrees and the growing body of literature on improving success for underrepresented students.  相似文献   

7.
The academic disciplines of Science, Technology, Engineering and Mathematics (STEM) have long suffered from a lack of diversity. While in recent years there has been some progress in addressing the underrepresentation of women in STEM subjects, other characteristics that have the potential to impact on equality of opportunity have received less attention. In this study, we surveyed 188 early career scientists (ECRs), defined as within 10 years of completing their PhD, in the fields of ecology, evolutionary biology, behaviour, and related disciplines. We examined associations between ethnicity, age, sexual orientation, sex, socioeconomic background, and disability, with measures of career progression, namely publication record, number of applications made before obtaining a postdoc, type of contract, and number of grant applications made. We also queried respondents on perceived barriers to progression and potential ways of overcoming them. Our key finding was that socioeconomic background and ethnicity were associated with measures of career progression. While there was no difference in the number of reported first‐authored papers on PhD completion, ethnic minority respondents reported fewer other‐authored papers. In addition, ECRs from a lower socioeconomic background were more likely to report being in teaching and research positions, rather than research‐only positions, the latter being perceived as more prestigious by some institutions. We discuss our findings in the context of possible inequality of opportunity. We hope that this study will stimulate wider discussion and help to inform strategies to address the underrepresentation of minority groups in the fields of ecology and evolution, and STEM subjects more widely.  相似文献   

8.
The Algae Foundation®, an American non-profit organization formed in February 2013, is developing a rich portfolio of algal-based Science, Technology, Engineering and Math (STEM) initiatives. The Algae Foundation’s efforts include the following: (1) formation of the Algae Technology Educational Consortium (ATEC); (2) development of two community college degrees: (i) Algal Biology and Cultivation and (ii) Algal Biotechnology; (3) development of the Algae Cultivation Extension Short-courses (ACES); (4) kindergarten to 12th grade (K–12) algal-based STEM curriculum initiatives; (5) student scholarships; and (6) funding of the revision of the Industrial Algae Measurements publication. The Algae Foundation® has been supported by more than 50 volunteers dedicating their time and intellectual capital to achieving its stated goals. The ATEC effort has initiated its first degree program in Algal Biology and Cultivation at Santa Fe Community College (SFCC), New Mexico, USA, in the Fall 2016 semester. The Algal Biotechnology degree program is scheduled to start in the Fall 2017 semester at Austin Community College (ACC), Texas, USA. A K–12 algal-based STEM initiative completed its pilot debut at the Aviara Oaks Middle School, Carlsbad, California, USA, in Spring 2016. The expansion of the algal curriculum K–12 program will reach 50 schools in 2017 to be followed by a national rollout in 2018.  相似文献   

9.
Gender inequity in Science, Technology, Engineering, and Medicine (STEM) fields, including parasitology, continues to limit the participation of women in scientific leadership and development. Here we highlight the aims and activities of Herminthology, an initiative promoting the work of women in parasitology, alongside the current status quo of men and women scientists in the discipline.  相似文献   

10.
Children are captivated with how things work and they like to build things and in many ways, engineering comes naturally for them. Progress does not come from technology alone but from the melding of technology and creative thinking through art and design. There has been a push for STEAM-based curricula to be included in science classrooms and the Next Generation Science Standards (NGSS) provides the framework for integrating engineering design into the structure of science education. The push for the STEAM platform is derived from the lack of creativity and innovation in recent college graduates in the United States. This STEAM-based unit meshes engineering design, representing and interpreting data, visual arts, and motion/stability. As students investigated and analyzed pendulum motion, they also created unique pendulum paintings. Throughout this unit our students applied their content knowledge across several disciplines and in turn allowed them to gain a better understanding and retention of these concepts. Through creating their own pendulum paintings, the students learned about pendulums and how they work, designed and constructed their own pendulums, and applied prior knowledge of forces and motion in a controlled experiment.  相似文献   

11.
The Vector Integration To Endpoint (VITE) circuit describes a real time neural network model which simulates behavioral and neurobiological properties of planned arm movements by the interaction of two populations of neurons. This model is generalized to include delay between the interacting populations, which is found to have a detrimental effect on movement accuracy. Conditions are given on the model parameters for accurate movement and target overshoot, where we show that there exists a non-zero critical value of the delay which the circuit can support while maintaining accurate movement. This critical delay depends on the movement speed, and becomes arbitrarily large for sufficiently slow movement. Thus neurobiological or artificial systems modelled by the VITE sensory-motor loop can tolerate an arbitrarily large delay if the movement speed is sufficiently slow.Acknowledgement This project was partially supported by Mathematics for Information Technology and Complex Systems, by the Canada Research Chairs program, and by the Natural Science and Engineering Research Council of Canada.  相似文献   

12.
ABSTRACT

Despite the rise of STEAM (science, technology, engineering, arts and mathematics) as an educational framework, there is a notable gap in the documentation of STEAM teaching practice and research. This article provides an overview of STEAM education connected to the topics in the invited articles authored by STEAM pioneers. It gives an operational definition of STEAM education, traces its development, and questions whether teaching and research in this area have coalesced sufficiently in order to establish STEAM as a “field.”  相似文献   

13.
Despite international advancements in gender equality across a variety of societal domains, the underrepresentation of girls and women in Science, Technology, Engineering, and Mathematics (STEM) related fields persists. In this study, we explored the possibility that the sex difference in mathematics anxiety contributes to this disparity. More specifically, we tested a number of predictions from the prominent gender stratification model, which is the leading psychological theory of cross-national patterns of sex differences in mathematics anxiety and performance. To this end, we analyzed data from 761,655 15-year old students across 68 nations who participated in the Programme for International Student Assessment (PISA). Most importantly and contra predictions, we showed that economically developed and more gender equal countries have a lower overall level of mathematics anxiety, and yet a larger national sex difference in mathematics anxiety relative to less developed countries. Further, although relatively more mothers work in STEM fields in more developed countries, these parents valued, on average, mathematical competence more in their sons than their daughters. The proportion of mothers working in STEM was unrelated to sex differences in mathematics anxiety or performance. We propose that the gender stratification model fails to account for these national patterns and that an alternative model is needed. In the discussion, we suggest how an interaction between socio-cultural values and sex-specific psychological traits can better explain these patterns. We also discuss implications for policies aiming to increase girls’ STEM participation.  相似文献   

14.
While aggregating the throughput of existing disks on cluster nodes is a cost-effective approach to alleviate the I/O bottleneck in cluster computing, this approach suffers from potential performance degradations due to contentions for shared resources on the same node between storage data processing and user task computation. This paper proposes to judiciously utilize the storage redundancy in the form of mirroring existed in a RAID-10 style file system to alleviate this performance degradation. More specifically, a heuristic scheduling algorithm is developed, motivated from the observations of a simple cluster configuration, to spatially schedule write operations on the nodes with less load among each mirroring pair. The duplication of modified data to the mirroring nodes is performed asynchronously in the background. The read performance is improved by two techniques: doubling the degree of parallelism and hot-spot skipping. A synthetic benchmark is used to evaluate these algorithms in a real cluster environment and the proposed algorithms are shown to be very effective in performance enhancement. Yifeng Zhu received his B.Sc. degree in Electrical Engineering in 1998 from Huazhong University of Science and Technology, Wuhan, China; the M.S. and Ph.D. degree in Computer Science from University of Nebraska – Lincoln in 2002 and 2005 respectively. He is an assistant professor in the Electrical and Computer Engineering department at University of Maine. His main research interests are cluster computing, grid computing, computer architecture and systems, and parallel I/O storage systems. Dr. Zhu is a Member of ACM, IEEE, the IEEE Computer Society, and the Francis Crowe Society. Hong Jiang received the B.Sc. degree in Computer Engineering in 1982 from Huazhong University of Science and Technology, Wuhan, China; the M.A.Sc. degree in Computer Engineering in 1987 from the University of Toronto, Toronto, Canada; and the PhD degree in Computer Science in 1991 from the Texas A&M University, College Station, Texas, USA. Since August 1991 he has been at the University of Nebraska-Lincoln, Lincoln, Nebraska, USA, where he is Professor and Vice Chair in the Department of Computer Science and Engineering. His present research interests are computer architecture, parallel/distributed computing, cluster and Grid computing, computer storage systems and parallel I/O, performance evaluation, real-time systems, middleware, and distributed systems for distance education. He has over 100 publications in major journals and international Conferences in these areas and his research has been supported by NSF, DOD and the State of Nebraska. Dr. Jiang is a Member of ACM, the IEEE Computer Society, and the ACM SIGARCH. Xiao Qin received the BS and MS degrees in computer science from Huazhong University of Science and Technology in 1992 and 1999, respectively. He received the PhD degree in computer science from the University of Nebraska-Lincoln in 2004. Currently, he is an assistant professor in the department of computer science at the New Mexico Institute of Mining and Technology. He had served as a subject area editor of IEEE Distributed System Online (2000–2001). His research interests are in parallel and distributed systems, storage systems, real-time computing, performance evaluation, and fault-tolerance. He is a member of the IEEE. Dan Feng received the Ph.D degree from Huazhong University of Science and Technology, Wuhan, China, in 1997. She is currently a professor of School of Computer, Huazhong University of Science and Technology, Wuhan, China. She is the principal scientist of the the National Grand Fundamental Research 973 Program of China “Research on the organization and key technologies of the Storage System on the next generation Internet.” Her research interests include computer architecture, storage system, parallel I/O, massive storage and performance evaluation. David Swanson received a Ph.D. in physical (computational) chemistry at the University of Nebraska-Lincoln (UNL) in 1995, after which he worked as an NSF-NATO postdoctoral fellow at the Technical University of Wroclaw, Poland, in 1996, and subsequently as a National Research Council Research Associate at the Naval Research Laboratory in Washington, DC, from 1997–1998. In 1999 he returned to UNL where he directs the Research Computing Facility and currently serves as an Assistant Research Professor in the Department of Computer Science and Engineering. The Office of Naval Research, the National Science Foundation, and the State of Nebraska have supported his research in areas such as large-scale scientific simulation and distributed systems.  相似文献   

15.
It is widely acknowledged that family and care‐giving responsibilities are driving women away from Science, Technology, Engineering, and Mathematics (STEM) fields. Marine mammal science often incurs heavy fieldwork and travel obligations, which make it a challenging career in which to find work‐life balance. This opinion piece explores gender equality, equity (the principles of fairness that lead to equality), and work‐life balance in science generally and in this field in particular. We aim to (1) raise awareness of these issues among members of the Society for Marine Mammalogy; (2) explore members’ attitudes and viewpoints collected from an online survey and further discussion at a biennial conference workshop in 2015; and (3) make suggestions for members to consider for action, or for the Board of Governors to consider in terms of changes to policy or procedures. Leaks in our pipeline—the attrition of women, and others with additional caring responsibilities—represent an intellectual and economic loss. By striving for equity and promoting work‐life balance, we will help to ensure a healthy and productive Society better able to succeed in its aims promoting education, high quality research, conservation, and management of marine mammals.  相似文献   

16.
Abstract

This study involves the development and implementation of a STEM activity containing 3?D printer technology, which is commonly used in STEM education. Out of school STEM courses were organized with seven middle school students studying in the 7th grade and the activities in the course were carried out with a 3D printer. One of the activities in the course is the Balance model. The study reveals the skills students used in the Balance Model activity, which is a 3D STEM activity. The students’ engineering skills were effective through the STEM activity, and they actively used skills such as planning, designing, explaining the design process, creating a realistic product, and testing and evaluating product performance. In addition, it was concluded that the students use their academic and technical skills effectively. The study presents in detail the preparation and implementation process of this activity, which we think may help educators uncover and improve students’ engineering skills.  相似文献   

17.
Interest in cross-disciplinary research knowledge interchange runs high. Review processes at funding agencies, such as the U.S. National Science Foundation, consider plans to disseminate research across disciplinary bounds. Publication in the leading multidisciplinary journals, Nature and Science, may signify the epitome of successful interdisciplinary integration of research knowledge and cross-disciplinary dissemination of findings. But how interdisciplinary are they? The journals are multidisciplinary, but do the individual articles themselves draw upon multiple fields of knowledge and does their influence span disciplines? This research compares articles in three fields (Cell Biology, Physical Chemistry, and Cognitive Science) published in a leading disciplinary journal in each field to those published in Nature and Science. We find comparable degrees of interdisciplinary integration and only modest differences in cross-disciplinary diffusion. That said, though the rate of out-of-field diffusion might be comparable, the sheer reach of Nature and Science, indicated by their potent Journal Impact Factors, means that the diffusion of knowledge therein can far exceed that of leading disciplinary journals in some fields (such as Physical Chemistry and Cognitive Science in our samples).  相似文献   

18.
ABSTRACT

First-year undergraduate curricula and their delivery should assist students in the transition from previous learning experiences to learning in higher education. However, the so-called articulation gap or discontinuity between secondary and higher education has been identified as a key structural curriculum problem for first-year success in South Africa and abroad. Valuable insights into this problem came from a recent study that drew on Legitimation Code Theory (LCT). Findings revealed an unexpectedly wide gap between the high school and the university biology curricula. The high school biology curriculum displays minimal movement between context-dependent, simpler meaning and relatively decontextualized, condensed meaning common in first-year biology. LCT Semantics was also found to be a valuable tool for restructuring curricula and pedagogy to intentionally enact semantic movement and thereby a more gradual transition for students from high school to university. This paper reports on an integrative first-year biology project aimed intentionally at taking students’ concept knowledge through a wide contextual range, and repeatedly between less and more complex meaning. I reflect on how the project design steers students towards creating semantic movement during their presentations, thereby contributing to cumulative knowledge building and a more gradual transition towards first-year epistemological access.  相似文献   

19.
The low success rate of first-year college students in Science, Technology, Engineering, and Mathematics (STEM) programs has spurred many academic achievement studies in which explanatory factors are studied. In this study, we investigated from a person-oriented perspective whether different motivational and academic self-concept profiles could be discerned between male and female first-year college students in STEM and whether differences in early academic achievement were associated with these student groups. Data on autonomous motivation, academic self-concept, and early academic achievement of 1,400 first-year STEM college students were collected. Cluster analyses were used to distinguish motivational profiles based on the relative levels of autonomous motivation and academic self-concept for male and female students. Differences in early academic achievement of the various profiles were studied by means of ANCOVA. Four different motivational profiles were discerned based on the dimensions of autonomous motivation (A) and academic self-concept (S): students scoring high and respectively low on both dimensions (HA-HS or LA-LS), and students scoring high on one dimension and low on the other (HA-LS or LA-HS). Also gender differences were found in this study: male students with high levels of academic self-concept and autonomous motivation had higher academic achievement compared to male students with low levels on both motivational dimensions. For female students, motivational profiles were not associated with academic achievement. The findings partially confirm the internal and external validity of the motivational theories underpinning this study and extend the present insights on identifying subgroup(s) of at risk students in contemporary STEM programs at university level.  相似文献   

20.
随着信息化手段的不断丰富,新型教育理念结合线上学习平台的新信息化教学模式成为高校课堂的改革新趋势。本次教学改革利用科学(Science)、技术(Technology)、工程(Engineering)、艺术(Art)和数学(Mathematics)多学科融合的超学科教育理念(简称STEAM教育)对教师教学过程进行了整体设计,同时借助“线上+线下”教学平台对学生学习过程进行了全面优化。将原本分散的验证型、操作型实验重新整合串联成以多角度“项目式”任务为主线、以Blackboard线上平台为辅线的自主研究型实验项目。新型教学模式以学生为主体,给学生提供更多自我展示和讨论互动的平台。从学生的课堂表现、知识测验、课后反馈、实验操作及实验报告4个方面对新型模式下的教学效果进行了分析和评价。结果表明,此模式不仅提高了学生在微生物学实验中的学习质量,增强了其学习主观能动性,而且有利于培养和提升学生的问题探究及实践创新能力。这一新型教学模式对其他生物学科实验课程的教学具有一定的借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号