首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为探讨氮沉降和经营强度对毛竹凋落叶化学计量特征的影响,研究了不同强度模拟氮沉降(低氮: 30 kg N·hm-2·a-1;中氮: 60 kg N·hm-2·a-1;高氮: 90 kg N·hm-2·a-1)对两种经营强度(粗放经营和集约经营)毛竹林凋落叶生态化学计量特征的影响.结果表明: 相比于粗放经营,集约经营使毛竹凋落叶C、N、P含量分别显著提高9.3%、32.4%和22.7%, 而C∶N、C∶P和N∶P分别显著降低17.4%、54.3%和44.6%.粗放经营条件下,低、中氮沉降显著提高了毛竹凋落叶C、N、P含量,但显著降低了C∶N、C∶P和N∶P;高氮沉降显著提高了C、N含量及C∶P、N∶P,但显著降低了P含量.集约经营条件下,低氮沉降显著提高了毛竹凋落叶P含量,降低了C含量及C∶P、N∶P;中氮沉降显著提高了N、P含量,降低了C含量及C∶N、C∶P和N∶P;高氮沉降显著提高了C∶N、C∶P和N∶P,降低了P含量.经营方式和氮沉降的交互作用显著影响了凋落叶除C∶N以外的生态化学计量特征.毛竹凋落叶P与土壤P含量呈显著相关.  相似文献   

2.
通过研究氮(N)添加和升温对杉木林凋落物分解过程中碳(C)、N、磷(P)化学计量特征的影响,探索杉木林养分周转规律。利用江西千烟洲亚热带杉木(Cunninghamia lanceolata)人工林长期野外N添加(CK (0)、N1 (50 kg N·hm-2·a-1)、N2(100 kg N·hm-2·a-1))控制试验平台,采集不同年龄杉木凋落物(一年生叶和二年生叶),在不同温度(20、30℃)条件下进行凋落物分解培养试验。结果表明:凋落物分解过程中,N添加对杉木凋落物C含量没有影响; N添加显著提高了分解过程中不同年龄凋落物的N含量,降低了凋落物P含量。相同N添加水平下,凋落物N、P含量表现为一年生叶>二年生叶。N添加对分解前期不同年龄凋落物的P含量表现为N2>N1>CK,分解后期凋落物P含量则与分解前期相反。N添加显著降低了凋落物C∶N,提高了凋落物C∶P、N∶P。在分解过程中,相同N水平下杉木凋落物C∶N、C∶P表现为二年生叶>一年生叶,N∶P趋...  相似文献   

3.
模拟氮沉降对华西雨屏区慈竹林凋落物分解的影响   总被引:7,自引:0,他引:7  
试验设对照(CK,0 kg·hm-2·a-1)、低氮(LN,50 kg·hm-2·a-1)、中氮(MN,150 kg·hm-2·a-1)和高氮(HN,300 kg·hm-2·a-1)4个施氮水平,通过原位试验,研究了模拟N沉降对华西雨屏区慈竹(Neosinocalamus affinis)林凋落物分解的影响.结果表明:不同组分凋落物分解过程中,慈竹叶片分解速率最快,其次是箨,枝最慢,分解15个月时,叶片、箨、枝的质量残留率分别为26.38%、46.18%和54.54%,三者差异极显著(P<0.01);叶片在凋落后第1~2月和7~10月分解较快,而箨和枝则在第5~8月分解较快;凋落叶片分解95%需要的时间(2.573年)分别比箨和枝短1.686年和3.319年.凋落叶分解15个月时,各N沉降处理间分解率差异不显著;凋落箨分解95%需要2.679~4.259年,其中MN分解率最高,CK最低;凋落枝经过15个月的分解,各处理分解率大小顺序为MN>HN>LN>CK,MN与LN处理间差异达显著水平(P<0.05).说明N沉降对3种凋落物分解均有明显的促进作用,且对凋落箨促进作用最强;但随着N沉降浓度的增加和时间的延长,其促进作用减缓.  相似文献   

4.
房福金  肖金兰  王东 《生态学报》2023,43(7):2927-2937
氮(N)是陆地生态系统初级生产力的重要限制因子,大气N沉降的增加将会对植物的化学元素含量和生物量产生重要影响,进而影响凋落物的化学计量特征及其养分归还。高寒灌丛是陆地生态系统的重要组成部分,但有关N沉降对高寒灌丛凋落物尤其是凋落枝的化学元素和生物量的研究还较为缺乏,难以深入揭示N沉降对高寒灌丛土壤碳(C)和养分循环的影响机理。基于此,以青藏高原东部地区的优势高寒灌丛类型—窄叶鲜卑花(Sibiraea angustata(Rehd.) Hand.-Mazz.)灌丛为研究对象,连续4年人工模拟N沉降,分析了凋落枝C、N、磷(P)、木质素和纤维素化学计量特征及其归还量对不同N添加浓度(0、20、50、100 kg hm-2 a-1)的响应趋势。结果表明:(1)N添加对凋落枝C、N含量无显著性影响(P>0.05),而对P、木质素和纤维素含量有显著性影响(P<0.05),但不同年份间的影响趋势不一致;(2)4年的N添加并未改变凋落枝的C/N、N/P,但显著降低了凋落枝的木质素/N(第3年)、C/P(第1年和第4年)和C/N/P(第1年);(...  相似文献   

5.
2013年4月-2014年4月,采用凋落叶分解袋法,研究了华西雨屏区常绿阔叶林凋落叶分解速率对低氮(LN, 50 kg N·hm-2·a-1)、高氮(HN, 150 kg N·hm-2·a-1)、低硫(LS, 200 kg S·hm-2·a-1)、高硫(HS, 400 kg S·hm-2·a-1)、低氮低硫(LNLS)、高氮低硫(HNLS)、低氮高硫(LNHS)和高氮高硫(HNHS)沉降的响应.结果表明: 氮、硫沉降1年后各处理的凋落叶质量残留率为57.0%~70.7%,凋落叶分解50%和95%的时间分别为1.47~2.08年和6.33~9.01年;氮沉降对凋落叶分解速率的影响不显著;LS显著提高了凋落叶分解速率,HS显著降低了凋落叶分解速率;LNHS和HNHS显著降低了凋落叶分解速率,LNLS和HNLS对凋落叶分解速率的影响不显著.氮、硫复合沉降对凋落叶分解速率的交互作用显著,且氮沉降与低硫复合沉降间存在拮抗作用,氮沉降与高硫复合沉降间存在协同作用.可见,硫沉降和模拟氮、硫复合沉降影响了华西雨屏区常绿阔叶林凋落叶分解速率,进而影响了凋落叶的分解过程.  相似文献   

6.
2018年2月至2019年1月,利用尼龙网袋法对滇中亚高山华山松和云南松两种人工林开展模拟氮(N)沉降下凋落叶和凋落枝原位分解试验,N沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低N(LN, 5 g N·m-2·a-1)、中N(MN, 15 g N·m-2·a-1)和高N(HN, 30 g N·m-2·a-1)。结果表明: 华山松凋落叶和凋落枝年分解率分别为34.8%和18.0%,分别高于云南松凋落叶的32.2%和凋落枝的16.1%。模拟N沉降下,LN处理使华山松凋落叶、枝分解95%所需时间较对照分别减少0.202和1.624年,MN处理分别减少0.045和1.437年,HN处理则分别增加0.840和2.112年;LN处理使云南松凋落叶、枝分解95%所需时间较对照分别减少0.766和4.053年,MN处理分别增加0.366和0.455年,HN处理分别增加0.826和0.906年。经过1年的分解,低N处理促进了华山松和云南松凋落物(叶、枝)的分解,而高N处理表现为抑制作用;N沉降对两种林型凋落物分解的影响与凋落物中纤维素和木质素含量密切相关。可见,凋落物基质质量在一定程度上决定了凋落物分解对N沉降的响应情况,尤其是纤维素和木质素含量。  相似文献   

7.
为了探究短期氮沉降对凋落物和土壤有机质化学组成的影响,以亚热带毛竹林为对象,于2020年7月—2022年1月设置氮沉降增加(施氮量50 kg N·hm-2·a-1)处理,利用热裂解气相色谱质谱联用(Py-GC/MS)技术,对毛竹林毛竹叶/根凋落物和土壤的有机质化学组分进行了分析。结果表明:与对照相比,短期氮沉降处理土壤有机质中酚类的相对含量显著增加了50.9%,而脂肪酸的相对含量显著减少了26.3%;叶凋落物中烷烯烃和木质素的相对含量显著增加了51.9%和33.5%,酚类和多糖的相对含量显著减少了52.2%和56.3%;根凋落物中多杂环芳香烃的相对含量显著减少了16.6%。土壤有机质中脂肪酸的相对含量与叶凋落物中多糖的相对含量呈显著正相关;土壤有机质中酚类的相对含量与叶凋落物中木质素的相对含量呈显著正相关,与多糖的相对含量呈显著负相关。短期氮沉降对毛竹林毛竹叶/根凋落物和土壤的总有机碳、总氮和碳氮比均无显著影响,但是会显著改变三者的有机质化学组成;另外,短期氮沉降下土壤有机质化学组成的变化受叶凋落物有机质化学组成的影响。  相似文献   

8.
华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应   总被引:8,自引:0,他引:8       下载免费PDF全文
从2008年1月至2009年2月, 对华西雨屏区亮叶桦(Betula luminifera)人工林进行了模拟氮(N)沉降试验, N沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低N (5 g N·m-2·a-1)、中N (15 g N·m-2·a-1)和高N (30 g N·m-2·a-1)。利用凋落袋法对亮叶桦凋落叶进行原位分解试验, 并在每月下旬定量地对各处理施N (NH4NO3)。结果表明, 虽然华西雨屏区大气N沉降量较高, 但模拟N沉降试验表明: 在N沉降继续增加的情况下, 凋落叶分解这一碳(C)循环和养分循环过程仍会受到显著影响。在1年的分解试验中, 模拟N沉降显著抑制了亮叶桦凋落叶的分解, N沉降处理使得凋落叶质量损失95%的时间在2.65年的基础上增加了1.14-1.96年。N沉降抑制凋落叶分解的原因在于无机N的富集对木质素和纤维素的分解造成阻碍。N沉降处理也导致C、N、磷、钾和镁元素在凋落物中的残留量增加, 但N沉降加速了钙元素的释放。凋落物基质化学特性在很大程度上决定了凋落物分解对N沉降的响应方向, 以及凋落物分解过程中各元素的动态变化。  相似文献   

9.
氮添加对亚热带毛竹林土壤微生物群落结构的影响   总被引:1,自引:0,他引:1  
氮沉降会影响森林生态系统地上(如植物生产力和组成)和地下特性(如土壤养分循环),进而影响土壤微生物群落结构和功能。本研究以亚热带戴云山毛竹林为对象,设置N0(0 kg N·hm-2·a-1)、N20(20 kg N·hm-2·a-1)、N80(80 kg N·hm-2·a-1) 3个施氮水平,进行3年的氮沉降模拟实验。通过测定土壤基本理化性质、腐殖化指数和微生物磷脂脂肪酸等指标,研究氮添加对毛竹林土壤养分、腐殖化指数和微生物群落结构的影响。结果显示,N20显著增加土壤腐殖化指数,降低土壤中碱性阳离子总量(K+,Na+,Ca2+,Mg2+)、革兰氏阳性菌(G+)、革兰氏阴性菌(G-)、总磷脂脂肪酸含量和G+/G-。与N20相比,N80处理土壤NO3-  相似文献   

10.
人类活动显著增加了氮沉降,对森林生态系统产生了不同程度的影响;凋落物在其分解过程中输入的大量有机碳、氮也会影响土壤碳氮的形成、稳定及转化.本研究选择亚热带常绿阔叶林,对样地进行8年氮添加[对照(0)、低氮(75 kg·hm-2·a-1)、高氮(150 kg·hm-2·a-1)]和控制凋落物处理(保留凋落物、去除凋落物),之后采集土壤样品,通过K2SO4、Na2B4O7、Na4P2O7、NaOH、H2SO4、Na2S2O4、HF等化学试剂逐级浸提土壤,测定各浸提液和残渣中的碳、氮含量,研究凋落物及氮添加对土壤矿物结合态碳、氮的影响.结果表明: 整体上,胡敏素(humin,H)组分的土壤碳、氮含量均为最高,分别占土壤全量的33.5%和33.3%.Na2B4O7溶液提取的土壤可溶性碳、氮含量最高,其次是NaOH和Na4P2O7溶液,3种试剂提取的土壤可溶性总碳、可溶性总氮以及可溶性有机氮分别占提取总量的46.2%、47.9%和76.5%.与对照相比,氮添加增加了Na2S2O4和H组分碳、氮含量;与保留凋落物比较,去除凋落物降低了Na2B4O7、H2SO4、Na2S2O4和H组分的碳含量,以及NaOH、HF和H组分的氮含量.保留凋落物和氮添加显著增加了K2SO4组分氮含量.可见,保留凋落物和外源氮通过影响化学稳定性不同的土壤组分的碳氮变化来改变土壤碳氮过程.  相似文献   

11.
凋落物分解的快慢和养分释放的速度决定了生态系统中土壤有效养分的供应。探讨全球变化条件下森林生态系统凋落物与土壤养分的变化规律,有利于深入认识凋落物-土壤相互作用的养分调控因素,从而揭示生态系统C、N、P循环。通过模拟氮沉降增加试验,分4个水平处理,分别为0、60、120、240 kg N hm~(-2)a~(-1)。模拟氮沉降13年后,分析了杉木人工林凋落物中不同组分(落叶、落枝、落果)生态化学计量与土壤有效养分(有效氮、碱解氮、速效磷、速效钾)的关系。结果表明:氮沉降(N1、N2和N3)显著提高了落叶和落枝的N含量,平均增幅分别为35.27%和32.21%;高水平氮沉降(N3)处理显著降低了落叶和落枝的C/N,平均降幅分别为25.95%和22.32%,但N3增加了落枝和落果N/P,平均增幅分别为38.4%和31.7%;氮沉降对凋落物各组分的C、P和C/P均影响不显著。氮沉降处理显著增加了土壤NO_3~--N和NH_4~+-N含量,均表现为N3N2N1N0,其中NO_3~--N含量更容易受氮沉降处理的影响,表现为更大的增幅。N2显著增加0—20 cm土层的碱解氮含量,N1显著降低0—20 cm土层的速效钾,但氮沉降对速效磷含量没有影响。凋落物生态化学计量与土壤有效养分之间的Pearson相关和冗余分析(RDA)表明,凋落物生态化学计量与土壤有效养分之间关系紧密,凋落物P含量(蒙特卡罗检验,P=0.018)和C/P比值(P=0.037)对土壤有效养分影响显著。凋落物中C/N比值、C/P比值与土壤有效养分呈显著负相关,其比值越高越不利于土壤有效养分的累积。  相似文献   

12.
杉木人工林凋落物分解对氮沉降的响应   总被引:2,自引:0,他引:2  
凋落物分解是陆地生态系统养分循环的关键过程,是全球碳(C)收支的一个重要主要组成部分,正受到全球大气氮(N)沉降的深刻影响。探讨大气氮沉降条件下森林凋落物的分解,有利于揭示森林生态系统C平衡和养分循环对全球变化的响应。选择福建沙县官庄林场1992年栽种的杉木(Cunninghamia lanceolata)人工林为研究对象,自2004年开始野外模拟氮沉降试验,至今12年。氮沉降处理分4个水平,N0、N1、N2和N3分别为0、60、120、240 kg N hm-2 a-1。2015年12月开展分解袋试验,对经过氮沉降处理12年的凋落物(叶、枝、果)进行模拟原位分解,每3个月收回一次分解袋样品,为期2年,同时测定凋落物干物质残留量及其C、N和磷(P)含量。结果表明,经2年分解后,氮沉降条件下凋落物叶、枝和果的干物质残留率平均值分别为27.68%、47.02%和43.18%,说明分解速率大小依次为叶 > 果 > 枝。凋落物叶、枝和果的分解系数平均为0.588、0.389和0.455,周转期(分解95%年限)分别为4-5年、6-8年和5-7年。低-中氮处理(N1和N2)均促进凋落物叶、枝和果的分解,以N1的效果更明显,而N3起到抑制作用。N1处理的凋落物叶、枝和果的周转期分别为:4.50年、6.09年和5.85年,N2处理的分别为4.95年、8.16年和6.19年。模拟氮沉降在一定程度上增加了凋落物叶、枝和果分解过程中的N和P含量,但降低了C含量。凋落物叶、枝和果分解过程中C元素呈现释放-富集-释放模式,N和P元素呈现释放与富集交替,除枝的N元素外,其他均表现为释放量大于富集量。  相似文献   

13.
樟树人工林凋落物养分含量及归还量对氮沉降的响应   总被引:3,自引:0,他引:3  
赵晶  闫文德  郑威  李忠文 《生态学报》2016,36(2):350-359
氮沉降的持续增加对陆地生态系统的健康发展构成严重威胁,森林是陆地生态系统中重要的组成部分,大量的氮沉降对其结构和功能造成严重影响。凋落物是森林生态系统养分循环的重要组成部分,它对土壤肥力、森林生态系统养分循环等方面具有重要作用。为了探讨亚热带常绿阔叶森林凋落物对氮沉降增加的响应,在湖南省森林植物园以樟树人工林为研究对象进行模拟氮沉降的实验,实验设置4种氮添加水平CK(0g N m~(-2)a~(-1),对照)、LN(5g N m~(-2)a~(-1)),MN(15g N m~(-2)a~(-1)),HN(30g N m~(-2)a~(-1)),研究氮沉降对樟树林年凋落物量、凋落物养分含量以及归还量的影响。结果表明:不同施氮水平下(CK、LN、MN、HN),樟树林凋落物的年凋落量分别为(4.53±0.32)t hm~(-2)a~(-1)、(3.95±0.28)t hm~(-2)a~(-1)、(3.56±0.41)t hm~(-2)a~(-1)、(4.46±0.48)t hm~(-2)a~(-1),施氮抑制了樟树林的凋落量,且低、中氮处理下差异显著(P0.05);施氮处理后凋落物的养分含量大小顺序为:CNCaKMg,凋落物的碳含量没有显著变化,但氮含量都有所增加,因此,施氮降低了樟树凋落物各组分的C/N比;凋落物中元素的年归还量大小顺序表现为:CNCaKMg,施氮处理对凋落物C、K、Ca、Mg归还量有抑制作用,但对凋落物N归还量表现为促进作用。  相似文献   

14.
利用原位分解袋法研究了华西雨屏区苦竹(Pleioblastus amarus)和撑绿杂交竹(Bambusa pervariabilis × Dendrocala mopsi)人工林几种凋落物组分在模拟氮沉降下分解过程中养分释放状态,试验周期为2 a。氮沉降水平分别为对照(CK, 0 g · m-2 · a-1)、低氮(5 g · m-2 · a-1)、中氮(15 g · m-2 · a-1)和高氮(30 g · m-2 · a-1),每月下旬定量地对各处理施氮(NH4NO3)。结果表明,苦竹林和杂交竹林凋落物主要由凋落叶、凋落箨和凋落枝组成,其中凋落叶约占80%;两个竹种凋落物在分解过程中养分元素释放的种间差异主要与初始养分元素含量有关;凋落物养分元素初始含量对元素释放模式和最终净释放率的大小具有重要的决定作用;目前,这两种竹林生态系统土壤氮输入主要以大气氮沉降(8.24 g · m-2 · a-1)为主,同时凋落物氮输入(苦竹和杂交竹林分别为1.93,5.07 g · m-2 · a-1)也是一个重要途径;模拟氮沉降对苦竹凋落物碳、磷、钾、钙元素和杂交竹凋落物碳、氮、磷、钾、钙、镁元素释放的抑制作用较弱,处理与对照之间元素总释放率差异一般小于10%;氮沉降显著抑制了苦竹林凋落物氮元素释放,减小幅度为19.0%-27.2%,但由于氮沉降增加对土壤肥力的直接改良作用,氮沉降的增加并不会因为凋落物分解速率的降低造成植物生长所需养分供应的减少;从短期来看,在氮沉降继续增加的情况下,该地区这类竹林生态系统的碳吸存能力仍可能会因为N沉降对植物生长的促进作用而增加。  相似文献   

15.
以不炼山+人工穴垦、不炼山+机械带垦和炼山+机械全垦3种不同整地组合下的2.5年生尾巨桉人工林为对象,对其碳储量及其分配格局进行研究。结果表明:(1)3种整地组合下尾巨桉各器官碳含量平均值为44.37%~57.42%,大小顺序为叶>干>枝>根>皮,带垦最大(51.21%),炼山全垦最小(49.95%);不同整地组合尾巨桉人工林林下地被物层的碳含量均无显著差异(P>0.05);土壤层(0~100 cm)碳含量均随土层深度的增大而减小,各层土壤平均碳含量总体趋势表现为带垦>炼山全垦>穴垦。(2)穴垦、带垦、炼山全垦措施下乔木层总碳储量依次为18.01、30.49和23.56 t.hm-2,各器官碳储量大小顺序为干>根>叶>枝>皮;除皮外,其余器官碳储量排序均为带垦>炼山全垦>穴垦。(3)尾巨桉人工林生态系统的总碳储量表现为带垦(197.03 t.hm-2)>炼山全垦(161.16t.hm-2)>穴垦(144.77 t.hm-2);不同整地措施碳储量分配格局均为土壤层>植被层>枯落物层。土壤层和乔木层碳储量均是带垦最大,在整个生态系统碳储量中处于主导地位,占整个系统碳储量在93%以上;不同整地组合措施对枯落物层的碳储量无显著影响。因此,从提高尾巨桉林分系统碳储量方面考虑,在雷州半岛及相似立地条件地区进行尾巨桉人工林造林时宜采取不炼山+机械带垦的整地组合方式。  相似文献   

16.
亚热带樟树-马尾松混交林凋落物量及养分动态特征   总被引:1,自引:0,他引:1  
李忠文  闫文德  郑威  梁小翠  王光军  朱凡 《生态学报》2013,33(24):7707-7714
选取亚热带典型的针阔混交林作为研究对象,从2009年至2011年每月进行凋落物的测定。结果表明:混交林年凋落物总量为(4634.723±337.1427) kg/hm2,且凋落叶(71.78%) > 凋落枝(26.24%) > 凋落碎屑(8.46%) > 凋落果(3.23%)。凋落总量的月变化趋势明显,在11月份达到了最大值1025.6 kg/hm2,而最小值出现在2月份138.606 kg/hm2。混交林凋落物中大量元素、微量元素含量差异显著。大量元素含量大小顺序:C > N > Ca > K > S > Mg > P,微量元素的含量大小顺序:Mn > Fe > Zn > Pb > Cd > Cu > Ni > Co。C/N的特征是:枝(66.96) > 果(63.48) > 叶(40.62)。森林凋落物养分的含量直接决定了其养分的归还量。樟树-马尾松混交林凋落物养分归还总量为80.936 kg/hm2。混交林凋落物各元素养分归还量大小顺序特征是:N > Ca > K > S > Mg > P > Mn > Fe > Zn > Pb > Cd > Cu > Ni > Co。各组分养分归还特征是:叶(67.469 kg/hm2) > 枝(14.928 kg/hm2) > 果(2.361 kg/hm2)。混交林中N的年归还量为40.964 kg/hm2,其中凋落叶的N归还量较大为34.877 kg/hm2。  相似文献   

17.
模拟N沉降对森林生态系统的影响是当今全球变化生态学研究的一个热点问题,土壤碳库对N沉降比较敏感,N沉降增加了凋落叶分解过程中外源N含量,间接影响凋落叶分解的化学过程并改变凋落叶分解速率,因此,研究模拟N沉降下凋落叶分解-土壤C-N关系对预测森林C吸存有重要意义。利用原位分解袋法研究了模拟N沉降下三峡库区不同林龄马尾松林(Pinus massoniana)凋落叶分解过程中凋落叶-土壤C、N化学计量响应及其关系;N沉降水平分对照(CK,0 g m~(-2)a~(-1))、低氮(LN,5 g m~(-2)a~(-1))、中氮(MN,10 g m~(-2)a~(-1))和高氮(HN,15 g m~(-2)a~(-1))。结果表明:分解540 d后,N沉降促进20年生和30年生马尾松林凋落叶分解,46年生马尾松林中仅低氮处理促进凋落叶分解,4种处理均是30年生分解最快,说明同一树种起始N含量低的凋落叶对N沉降呈正响应,N沉降处理促进起始N含量低的凋落叶分解,起始N含量高的凋落叶分解过程中易达到"N饱和"。N沉降抑制20年生和46年生凋落叶C释放(低于对照0.62%—6.69%),促进30年生C释放(高于对照0.28%—5.55%);30年生和46年生林分N固持量均高于对照(高于对照0.15%—21.34%),20年生则低于对照(5.70%—13.87%),说明模拟N沉降处理促进起始C含量低的凋落叶C释放和起始N含量低的凋落叶N固持。N沉降处理下仅30年生马尾松林土壤有机碳较对照增加,且土壤有机质与凋落叶C、N和分解速率呈正相关,与凋落叶C/N比呈显著负相关;土壤总氮与凋落叶分解速率、凋落叶N含量呈正相关,土壤有机碳/总氮比与凋落叶C、N含量呈正相关;对照处理中凋落叶分解指标对土壤养分影响顺序是分解速率凋落物C含量凋落物C/N比凋落物N含量,低、中、高氮处理中则是凋落物C含量分解速率凋落物N含量凋落物C/N比。研究表明低土壤养分含量马尾松林对N沉降呈正响应,N沉降促进低土壤养分马尾松林凋落叶分解并提高土壤肥力;凋落叶质量和土壤养分含量低的生态系统土壤C对N沉降响应更显著。  相似文献   

18.
雷睿  邹佳城  杜杰  文庄海  罗治  雷泞菲 《广西植物》2023,43(9):1578-1587
为探讨氮沉降对九寨沟藓类植物的影响,该研究以当地优势藓类植物锦丝藓(Actinothuidium hookeri)和塔藓(Hylocomium splendens)为对象,以NH4NO3为氮源,设置对照(0 kg N·hm-2·a-1)、低浓度(20 kg N·hm-2·a-1)、高浓度(50 kg N·hm-2·a-1)3种处理,开展为期6个月的氮沉降模拟实验。结果表明:(1)氮沉降处理导致两种藓类植物的活性氧、丙二醛、叶绿素、脯氨酸和可溶性蛋白含量显著增加,同时锦丝藓过氧化氢酶、过氧化物酶、超氧化物歧化酶、抗坏血酸过氧化物酶活性增加。(2)对于生长旺期和生长末期的塔藓,氮沉降导致其过氧化物酶、过氧化氢酶、抗坏血酸过氧化物酶活性降低。(3)锦丝藓的综合隶属函数值随氮沉降浓度增大而增加,在生长旺期和生长末期,塔藓综合隶属函数值对氮沉降的响应存在差异。综上认为,两种藓类植物对氮沉降处理的生理响应存在差异,高浓度氮沉...  相似文献   

19.
为理解氮沉降对华西雨屏区天然常绿阔叶林凋落物分解过程的影响,采用立地控制实验和凋落物分解袋法,研究了低氮沉降(L,50 kg N hm~(-2)a~(-1))、中氮沉降(M,150 kg N hm~(-2)a~(-1))和高氮沉降(H,300 kg N hm~(-2)a~(-1))对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响。结果表明:N沉降抑制了凋落叶的分解,并随着N沉降量的增加,抑制作用增强。N沉降遏制了凋落叶的C、N释放和纤维素降解,促进了P释放。N沉降提高了凋落叶的C/P比,中氮和高氮处理提高了凋落叶C/N比。N沉降显著增加了凋落叶N、木质素和纤维素的含量,分解1年后,各N沉降处理的木质素/N和纤维素/N均显著高于对照。N沉降提高了质量残留率与C/N、木质素/N和纤维素/N的相关性,降低了与C/P的相关性。可见,模拟N沉降显著影响了华西雨屏区天然常绿阔叶林凋落叶分解过程中的基质质量,进而影响了凋落叶的分解过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号