首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na(+) entry across the apical membranes of many absorptive epithelia is determined by the number (N) and open probability (P(o)) of epithelial sodium channels (ENaC). Previous results showed that the H3 domain of syntaxin-1A (S1A) binds to ENaC to reduce N, supporting a role for S1A in the regulation of ENaC trafficking. The aim of this study was to determine whether S1A-induced reductions in ENaC current also result from interactions between cell surface ENaC and S1A that alter ENaC P(o). Injection of a glutathione S-transferase (GST)-H3 S1A fusion protein into ENaC-expressing Xenopus oocytes inhibited whole cell Na(+) current (I(Na)) by 33% within 5 min. This effect was dose-dependent, with a K(i) of 7 ng/microl (approximately 200 nm). In contrast, injection of GST alone or a H3 domain-deleted GST-S1A fusion protein had no effect on I(Na). In cell-attached patch clamp experiments, GST-H3 acutely decreased ENaC P(o) by 30%, whereas GST-S1A Delta H3 was without effect. Further analysis revealed that ENaC mean closed time was significantly prolonged by S1A. Interestingly, GST-H3 had no effect on channel activity of an ENaC pore mutant that constitutively gates open (P(o) approximately equal 1.0), supporting the idea that S1A alters the closed state of ENaC and indicating that the actions of S1A on ENaC trafficking and gating can be separated experimentally. This study indicates that, in addition to a primary effect on ENaC trafficking, S1A interacts with cell surface ENaC to rapidly decrease channel gating. This rapid effect of S1A may modulate Na(+) entry rate during rapid increases in ENaC N.  相似文献   

2.
The pancreatic ATP-sensitive potassium (K(ATP)) channel consisting of four inwardly rectifying potassium channel 6.2 (Kir6.2) and four sulfonylurea receptor SUR1 subunits plays a key role in insulin secretion by linking glucose metabolism to membrane excitability. Syntaxin 1A (Syn-1A) is a plasma membrane protein important for membrane fusion during exocytosis of insulin granules. Here, we show that Syn-1A and K(ATP) channels endogenously expressed in the insulin-secreting cell INS-1 interact. Upregulation of Syn-1A by overexpression in INS-1 leads to a decrease, whereas downregulation of Syn-1A by small interfering RNA (siRNA) leads to an increase, in surface expression of K(ATP) channels. Using COSm6 cells as a heterologous expression system for mechanistic investigation, we found that Syn-1A interacts with SUR1 but not Kir6.2. Furthermore, Syn-1A decreases surface expression of K(ATP) channels via two mechanisms. One mechanism involves accelerated endocytosis of surface channels. The other involves decreased biogenesis and processing of channels in the early secretory pathway. This regulation is K(ATP) channel specific as Syn-1A has no effect on another inward rectifier potassium channel Kir3.1/3.4. Our results demonstrate that in addition to a previously documented role in modulating K(ATP) channel gating, Syn-1A also regulates K(ATP) channel expression in β-cells. We propose that physiological or pathological changes in Syn-1A expression may modulate insulin secretion by altering glucose-secretion coupling via changes in K(ATP) channel expression.  相似文献   

3.
Membrane fusion is a process that intimately involves both proteins and lipids. Although the SNARE proteins, which ultimately overcome the energy barrier for fusion, have been extensively studied, regulation of the energy barrier itself, determined by specific membrane lipids, has been largely overlooked. Our findings reveal a novel function for SNARE proteins in reducing the energy barrier for fusion, by directly binding and sequestering fusogenic lipids to sites of fusion. We demonstrate a specific interaction between Syntaxin1A and the fusogenic lipid phosphatidic acid, in addition to multiple polyphosphoinositide lipids, and define a polybasic juxtamembrane region within Syntaxin1A as its lipid-binding domain. In PC-12 cells, Syntaxin1A mutations that progressively reduced lipid binding resulted in a progressive reduction in evoked secretion. Moreover, amperometric analysis of fusion events driven by a lipid-binding-deficient Syntaxin1A mutant (5RK/A) demonstrated alterations in fusion pore dynamics, suggestive of an energetic defect in secretion. Overexpression of the phosphatidic acid-generating enzyme, phospholipase D1, completely rescued the secretory defect seen with the 5RK/A mutant. Moreover, knockdown of phospholipase D1 activity drastically reduced control secretion, while leaving 5RK/A-mediated secretion relatively unaffected. Altogether, these data suggest that Syntaxin1A-lipid interactions are a critical determinant of the energetics of SNARE-catalyzed fusion events.  相似文献   

4.
5.
Syntaxin 6 regulates Glut4 trafficking in 3T3-L1 adipocytes   总被引:2,自引:0,他引:2       下载免费PDF全文
Insulin stimulates the movement of glucose transporter-4 (Glut4)-containing vesicles to the plasma membrane of adipose cells. We investigated the role of post-Golgi t-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in the trafficking of Glut4 in 3T3-L1 adipocytes. Greater than 85% of syntaxin 6 was found in Glut4-containing vesicles, and this t-SNARE exhibited insulin-stimulated movement to the plasma membrane. In contrast, the colocalization of Glut4 with syntaxin 7, 8, or 12/13 was limited and these molecules did not translocate to the plasma membrane. We used adenovirus to overexpress the cytosolic domain of these syntaxin's and studied their effects on Glut4 traffic. Overexpression of the cytosolic domain of syntaxin 6 did not affect insulin-stimulated glucose transport, but increased basal deGlc transport and cell surface Glut4 levels. Moreover, the syntaxin 6 cytosolic domain significantly reduced the rate of Glut4 reinternalization after insulin withdrawal and perturbed subendosomal Glut4 sorting; the corresponding domains of syntaxins 8 and 12 were without effect. Our data suggest that syntaxin 6 is involved in a membrane-trafficking step that sequesters Glut4 away from traffic destined for the plasma membrane. We speculate that this is at the level of traffic of Glut4 into its unique storage compartment and that syntaxin 16 may be involved.  相似文献   

6.
7.
Close association exists between melanocytes, the pigment melanin-producing cells in the body, and their neighboring keratinocytes. Keratinocytes are the pigment recipients and skin pigmentation is the result of this interaction. While the chemical basis of melanin production (melanogenesis) is well documented, the molecular mechanism of melanosome transfer needs to be elucidated. We are now providing first evidence that the protease-activated receptor 2 (PAR-2) expressed on keratinocytes, but not on melanocytes, is involved in melanosome transfer and therefore may regulate pigmentation. Activation of PAR-2 with trypsin or with the peptide agonist SLIGRL induced pigmentation in both two- and three-dimensional cocultures of keratinocytes and melanocytes, but not in cocultures that were spatially separated, indicating the need for intimate cell-cell contact. Topical application of SLIGRL on human skin transplanted on SCID mice resulted in a visible skin darkening. Histological examination revealed increased deposits of melanin in the keratinocytes. Inhibition of PAR-2 activation by RWJ-50353, a serine protease inhibitor, resulted in depigmentation and changes in expression of melanogenic-specific genes. Keratinocyte-melanocyte contact was essential for this depigmenting effect. Topical application of this inhibitor induced lightening of the dark skin Yucatan swine, which was confirmed by histochemical analysis. The results presented here suggest a novel mechanism for the regulation of pigmentation, mediated by the activation or inhibition of the keratinocyte receptor PAR-2.  相似文献   

8.
PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified as a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.  相似文献   

9.
Sec1/Munc18 (SM) proteins are involved in various intracellular membrane trafficking steps. Many SM proteins bind to appropriate syntaxin homologues involved in these steps, suggesting that SM proteins function as syntaxin chaperones. Organisms with mutations in SM genes, however, exhibit defects in either early (docking) or late (fusion) stages of exocytosis, implying that SM proteins may have multiple functions. To gain insight into the role of SM proteins, we introduced mutations modeled on those identified in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae into mammalian Munc18-1. As expected, several mutants exhibited reduced binding to syntaxin1A. However, three mutants displayed wild-type syntaxin binding affinities, indicating syntaxin-independent defects. Expression of these mutants in chromaffin cells either increased the rate and extent of exocytosis or altered the kinetics of individual release events. This latter effect was associated with a reduced Mint binding affinity in one mutant, implying a potential mechanism for the observed alteration in release kinetics. Furthermore, this phenotype persisted when the mutation was combined with a second mutation that greatly reduced syntaxin binding affinity. These results clarify the data on the function of SM proteins in mutant organisms and indicate that Munc18-1 controls multiple stages of exocytosis via both syntaxin-dependent and -independent protein interactions.  相似文献   

10.
Syntaxin 11 (Stx11) is a SNARE protein enriched in cells of the immune system. Loss or mutation of Stx11 results in familial hemophagocytic lymphohistiocytosis type-4 (FHL-4), an autosomal recessive disorder of immune dysregulation characterized by high levels of inflammatory cytokines along with defects in T-cell and natural killer cell function. We show here Stx11 is located on endosomal membranes including late endosomes and lysosomes in macrophages. While Stx11 did not form a typical trans-SNARE complex, it did bind to the Q-SNARE Vti1b and was able to regulate the availability of Vti1b to form the Q-SNARE complexes Stx6/Stx7/Vtib and Stx7/Stx8/Vti1b. The mutant form of Stx11 sequestered Vti1b from forming the Q-SNARE complex that mediates late endosome to lysosome fusion. Depletion of Stx11 in activated macrophages leads to an accumulation of enlarged late endocytic compartments, increased trafficking to the cell surface and inhibition of late endosome to lysosome fusion. These phenotypes are rescued by the expression of an siRNA-resistant Stx11 construct in Stx11-depleted cells. Our results suggest that by regulating the availability of Vti1b, Stx11 regulates trafficking steps between late endosomes, lysosomes and the cell surface in macrophages.  相似文献   

11.
Hrs-2, via interactions with SNAP-25, plays a regulatory role on the exocytic machinery. We now show that Hrs-2 physically interacts with Eps15, a protein required for receptor-mediated endocytosis. The Hrs-2/Eps15 interaction is calcium dependent, inhibited by SNAP-25 and alpha-adaptin, and results in the inhibition of receptor-mediated endocytosis. Immunoelectron microscopy reveals Hrs-2 localization on the limiting membrane of multivesicular bodies, organelles in the endosomal pathway. These data show that Hrs-2 regulates endocytosis, delineate a biochemical pathway (Hrs-2-Eps15-AP2) in which Hrs-2 functions, and suggest that Hrs-2 acts to provide communication between endo- and exocytic processes.  相似文献   

12.
The Crumbs family of apical transmembrane proteins regulates apicobasal polarity via protein interactions with a conserved C-terminal sequence, ERLI. However, one of the mammalian Crumbs proteins, Crumbs3 (CRB3) has an alternate splice form with a novel C-terminal sequence ending in CLPI (CRB3-CLPI). We report that CRB3-CLPI localizes to the cilia membrane and a membrane compartment at the mitotic spindle poles. Knockdown of CRB3-CLPI leads to both a loss of cilia and a multinuclear phenotype associated with centrosomal and spindle abnormalities. Using protein purification, we find that CRB3-CLPI interacts with importin beta-1 in a Ran-regulated fashion. Importin beta-1 colocalizes with CRB3-CLPI during mitosis, and a dominant-negative form of importin beta-1 closely phenocopies CRB3-CLPI knockdown. Knockdown of importin beta-1 blocks targeting of CRB3-CLPI to the spindle poles. Our data suggest an expanded role for Crumbs proteins in polarized membrane targeting and cell division via unique interactions with importin proteins.  相似文献   

13.
We report that potassium leakage from cells leads to activation of the Ca2+-independent phospholipase A2 (iPLA2), and the latter plays a pivotal role in regulating the cleavage of pro-IL-1 beta by the IL-converting enzyme caspase-1 in human monocytes. K+ efflux led to increases of cellular levels of glycerophosphocholine, an unambiguous indicator of phospholipase A2 activation. Both maturation of IL-1 beta and formation of glycerophosphocholine were blocked by bromoenol lactone, the specific iPLA2 inhibitor. Bromoenol lactone-dependent inhibition of IL-1 beta processing was not due to perturbation of the export machinery for pro-IL-1 beta and IL-1 beta or to caspase-1 suppression. Conspicuously, activation of Ca2+-dependent phospholipase A2 did not support but rather suppressed IL-1 beta processing. Thus, our findings reveal a specific role for iPLA2 activation in the sequence of events underlying IL-1 beta maturation.  相似文献   

14.
Filamin A regulates cell spreading and survival via beta1 integrins   总被引:1,自引:0,他引:1  
Cell spreading and exploration of topographically complex substrates require tightly-regulated interactions between extracellular matrix receptors and the cytoskeleton, but the molecular determinants of these interactions are not defined. We examined whether the actin-binding proteins cortactin, vinculin and filamin A are involved in the formation of the earliest extensions of cells spreading over collagen or poly-L-lysine-coated smooth and beaded substrates. Spreading of human gingival fibroblasts was substantially reduced on beaded or poly-L-lysine-coated substrates. Filamin A, vinculin and cortactin were found in cell extensions on smooth collagen. HEK-293 cells also spread rapidly on smooth collagen and formed numerous cell extensions enriched with filamin A. Knockdown of filamin A in HEK-293 cells by short hairpin RNA reduced spreading and the number of cell extensions. Blocking beta1 integrin function significantly reduced cell spreading and localization of filamin A to cell extensions. Conversely, filamin A-knockdown reduced beta1 integrin-collagen binding as measured by 12G10 antibody, suggesting co-dependence between filamin A and beta1 integrin functions. TUNEL staining showed higher percentages of apoptosis after filamin A-knockdown in spreading cells. Chelation of [Ca2+]i with BAPTA/AM reduced spreading of wild-type and filamin A-knockdown cells, however wild-type cells showed recruitment of filamin A to the subcortex, indicating independent roles of filamin A and [Ca2+]i in cell spreading. We conclude that filamin A integrates with beta1 integrins to mediate cell spreading and prevent apoptosis.  相似文献   

15.
Glucose-induced insulin exocytosis is coupled to associations between F-actin and SNARE proteins, although the nature and function of these interactions remains unknown. Toward this end we show here that both Syntaxin 1A and Syntaxin 4 associated with F-actin in MIN6 cells and that each interaction was rapidly and transiently diminished by stimulation of cells with d-glucose. Of the two isoforms, only Syntaxin 4 was capable of interacting directly with F-actin in an in vitro sedimentation assay, conferred by the N-terminal 39-112 residues of Syntaxin 4. The 39-112 fragment was capable of selective competitive inhibitory action, disrupting endogenous F-actin-Syntaxin 4 binding in MIN6 cells. Disruption of F-actin-Syntaxin 4 binding correlated with enhanced glucose-stimulated insulin secretion, mediated by increased granule accumulation at the plasma membrane and increased Syntaxin 4 accessibility under basal conditions. However, no increase in basal level Syntaxin 4-VAMP2 association occurred with either latrunculin treatment or expression of the 39-112 fragment. Taken together, these data disclose a new underlying mechanism by which F-actin negatively regulates exocytosis via binding and blocking Syntaxin 4 accessibility, but they also reveal the existence of additional signals and/or steps required to trigger the subsequent docking and fusion steps of exocytosis.  相似文献   

16.
Syntaxin 1A inhibits regulated CFTR trafficking in Xenopus oocytes   总被引:4,自引:0,他引:4  
The cystic fibrosis transmembrane conductance regulator (CFTR)is an epithelial cell Cl channel, whose gating activity and membranetrafficking are controlled by cAMP/protein kinase A (PKA)-mediated phosphorylation. CFTR Cl currents are regulated also by syntaxin 1A (A. P. Naren, D. J. Nelson, W. W. Xie, B. Jovov, J. Pevsner, M. K. Bennett,D. J. Benos, M. W. Quick, and K. L. Kirk.Nature 390: 302-305, 1997), aprotein best known for its role in membrane trafficking andneurosecretion. To examine the mechanism of syntaxin 1A inhibition, weexpressed these proteins in Xenopusoocytes and monitored agonist-induced changes in plasma membranecapacitance and cell surface fluorescence of CFTR that contains anexternal epitope tag. cAMP stimulation elicited large increases inmembrane capacitance and in cell surface labeling of flag-tagged CFTR. Coexpression of CFTR with syntaxin 1A, but not syntaxin 3, inhibited cAMP-induced increases in membrane capacitance and plasma membrane CFTRcontent. Injection of botulinum toxin/C1 rapidly reversed syntaxin'seffects on current and capacitance, indicating that they cannot beexplained by an effect on CFTR synthesis. Functional expression ofother integral membrane proteins, including Na-coupled glucosetransporter hSGLT1, inwardly rectified K channel hIK1, P2Y2 nucleotidereceptor, and viral hemagglutinin protein, was not affected by syntaxin1A coexpression. These findings indicate that acute regulation of thenumber of CFTR Cl channels in plasma membrane is one mechanism by whichcAMP/PKA regulates Cl currents. Inhibition of plasma membrane CFTRcontent by syntaxin 1A is consistent with the concept that syntaxin andother components of the SNARE machinery are involved in regulatedtrafficking of CFTR.

  相似文献   

17.
We have generated a syntaxin 1A knockout mouse by deletion of exons 3 through 6 and a concomitant insertion of a stop codon in exon 2. Heterozygous knockout animals were viable with no apparent phenotype. In contrast, the vast majority of homozygous animals died in utero, with embryos examined at day E15 showing a drastic reduction in body size and development when compared to WT and heterozygous littermates. Surprisingly, out of a total of 204 offspring from heterozygous breeding pairs only four homozygous animals were born alive and viable. These animals exhibited reduced body weight, but showed only mild behavioral deficiencies. Taken together, our data indicate that syntaxin 1A is an important regulator of normal in utero development, but may not be essential for normal brain function later in life.  相似文献   

18.
Neurotransmitter transporters are regulated through a variety of signal transduction mechanisms which appear to operate in order to maintain appropriate levels of transmitter in the synaptic cleft. One such mechanism is the trafficking of the transporter in association with synaptic vesicle release machinery. This report examines the specifics of trafficking regulation of the rat brain GABA transporter GAT1 by syntaxin 1A, a plasma membrane component of the SNARE complex which is involved in vesicle membrane fusion. In hippocampal neurons, botulinum neurotoxin 1C, which specifically cleaves syntaxin 1A, down-regulates plasma membrane GAT1 levels as assessed by surface biotinylation, suggesting that syntaxin 1A is a positive regulator of GAT1 surface expression. The up-regulation correlates with a decrease in intracellular GAT1 levels and is complete within several minutes. These data suggest that syntaxin 1A mediates the redistribution of GAT1 on a time scale important for the rapid regulation of extracellular GABA levels. Expression of different syntaxin 1A constructs in Xenopus oocytes suggests that several portions of the syntaxin 1A molecule are required for the trafficking of GAT1. These data suggest that the trafficking of GAT1 will be subject to regulatory control by the many molecules known to interact with various domains of syntaxin 1A.  相似文献   

19.
Neurotransmitter transporters are regulated through a variety of signal transduction mechanisms which appear to operate in order to maintain appropriate levels of transmitter in the synaptic cleft. One such mechanism is the trafficking of the transporter in association with synaptic vesicle release machinery. This report examines the specifics of trafficking regulation of the rat brain GABA transporter GAT1 by syntaxin 1A, a plasma membrane component of the SNARE complex which is involved in vesicle membrane fusion. In hippocampal neurons, botulinum neurotoxin 1C, which specifically cleaves syntaxin 1A, down-regulates plasma membrane GAT1 levels as assessed by surface biotinylation, suggesting that syntaxin 1A is a positive regulator of GAT1 surface expression. The up-regulation correlates with a decrease in intracellular GAT1 levels and is complete within several minutes. These data suggest that syntaxin 1A mediates the redistribution of GAT1 on a time scale important for the rapid regulation of extracellular GABA levels. Expression of different syntaxin 1A constructs in Xenopus oocytes suggests that several portions of the syntaxin 1A molecule are required for the trafficking of GAT1. These data suggest that the trafficking of GAT1 will be subject to regulatory control by the many molecules known to interact with various domains of syntaxin 1A.  相似文献   

20.
Mast cells play a central role in both innate and acquired immunity. When activated by IgE-dependent FcεRI cross-linking, mast cells rapidly initiate a signaling cascade and undergo an extensive release of their granule contents, including inflammatory mediators. Some SNARE (soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor) proteins and SM (Sec1/Munc18) family proteins are involved in mast cell degranulation. However, the function of syntaxin binding protein 1 (STXBP1), a member of SM family, in mast cell degranulation is currently unknown. In this study, we examined the role of STXBP1 in IgE-dependent mast cell activation. Liver-derived mast cells (LMCs) from wild-type and STXBP1-deficient mice were cultured in vitro for the study of mast cell maturation, degranulation, cytokine and chemokine production, as well as MAPK, IκB-NFκB, and NFAT signaling pathways. In addition, in vivo models of passive cutaneous anaphylaxis and late-phase IgE-dependent inflammation were conducted in mast cell deficient Wsh mice that had been reconstituted with wild-type or STXBP1-deficient mast cells. Our findings indicate that STXBP1 is not required for any of these important functional mechanisms in mast cells both in vitro and in vivo. Our results demonstrate that STXBP1 is dispensable during IgE-mediated mast cell activation and in IgE-dependent allergic inflammatory reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号