首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical characteristics of cancellous bone at the upper femoral region   总被引:10,自引:0,他引:10  
Mechanical behaviour of trabecular bone at the upper femoral region of human bones has been studied by compression tests on trabecular bone specimens removed from normal femora obtained at autopsy. Compression tests were performed along three different axes of loading on wet specimens and high loading rates. Femoral head specimens proved to be the strongest for any axis of loading.

Large variation in compressive strength and modulus of elasticity is seen within and between femoral bone samples. Anisotropy and differences in anisotropy for the different regions have been observed. A significant correlation between mechanical properties (σ max − E) and bone mineral content of the specimen was found.

Tests on whole bone structures demonstrate that removal of the central part of the trabecular bone at the proximal femur reduces the strength for impact loading considerably (± 50%).  相似文献   


2.
Summary Sclerostin, the secreted protein product of the SOST gene, which is mainly expressed by osteocytes, has recently been proposed as a negative regulator of bone osteoblastogenesis. Chronic elevation of PTH reduces SOST expression by osteocytes, while controversial results have been obtained by intermittent PTH administration. We have investigated the effects of intermittently administered PTH on SOST expression and sclerostin localization, comparing them with those of controls, as they appeared in three different bone segments of rat tibia: secondary trabecular metaphyseal and epiphyseal bone, and cortical diaphyseal bone. The histomorphometric results demonstrate that PTH enhances bone turnover through anabolic effects, as shown by the association of increased bone resorption variables with a significant rise in BV/TV, Tb.Th and Tb.N and a fall in Tb.Sp. PTH induces a SOST mRNA and protein fall in secondary metaphyseal trabeculae, diaphyseal bone and in epiphyseal trabeculae. Numbers of sclerostin immunopositive osteocytes/mm2 show no change, compared with controls; there are fewer sclerostin-positive osteocytes in secondary metaphyseal trabeculae than in the other two bone areas, both in the control and PTH groups. The low numbers of sclerostin-positive osteocytes in the metaphyseal trabecular bone seem to be directly related to the fact that this area displays a high remodeling rate. The anabolic effects of PTH are in line with the fall of SOST mRNA and protein in all the three bone segments examined; the rise of bone turnover supports a negative role of SOST in bone formation.  相似文献   

3.
It is generally accepted that the strength and stiffness of trabecular bone is strongly affected by trabecular microstructure. It has also been hypothesized that stress induced adaptation of trabecular bone is affected by trabecular tissue level stress and/or strain. At this time, however, there is no generally accepted (or easily accomplished) technique for predicting the effect of microstructure on trabecular bone apparent stiffness and strength or estimating tissue level stress or strain. In this paper, a recently developed mechanics theory specifically designed to analyze microstructured materials, called the homogenization theory, is presented and applied to analyze trabecular bone mechanics. Using the homogenization theory it is possible to perform microstructural and continuum analyses separately and then combine them in a systematic manner. Stiffness predictions from two different microstructural models of trabecular bone show reasonable agreement with experimental results, depending on metaphyseal region, (R2 greater than 0.5 for proximal humerus specimens, R2 less than 0.5 for distal femur and proximal tibia specimens). Estimates of both microstructural strain energy density (SED) and apparent SED show that there are large differences (up to 30 times) between apparent SED (as calculated by standard continuum finite element analyses) and the maximum microstructural or tissue SED. Furthermore, a strut and spherical void microstructure gave very different estimates of maximum tissue SED for the same bone volume fraction (BV/TV). The estimates from the spherical void microstructure are between 2 and 20 times greater than the strut microstructure at 10-20% BV/TV.  相似文献   

4.
Morphological, histochemical and ultrastructural investigations on epiphyseal apparatus of Rana Esculenta were made. The most important findings were the following: 1) metaphyseal cartilage is localized inside proximal diaphyseal compact bone as a plug; 2) metaphyseal cartilage do not reduce in thickness during ageing; 3) metaphyseal cartilage do not show vascular invasion and do not mineralize in degenerative zone; 4) trabecular bone was not at all evident in this animal; 5) external periosteum is well vascularized and proliferates in correspondence to marginal epiphyseal end of the diaphyseal. From these results the hypothesis that the ranid frog bone growth is not due to metaphyseal metabolism (as in avian and mammals) but to bone periosteal marginal mineralization is reached.  相似文献   

5.
The load-bearing area in the knee joint   总被引:7,自引:0,他引:7  
Measurements were made of the location and size of the contact areas in cadaver knee joints, for a load of 150 Kgf applied for 5 sec down the long axis of the tibia. Results were obtained from a total of 4 knees, considering flexion angles from 0 to 120°. The methods used were to measure directly from castings of the joint cavity; and to calculate from measurements of radii of curvature and joint deflection. Average contact areas for lateral and medial condyles were 1·4 and 1·8 cm2 respectively. Areas for the medial condyle were greater than for the lateral condyle and also the areas diminished as flexion angle increased. The implications of the results to contact stresses, joint lubrication and ‘condylar replacement’ knee prosthesis design were discussed.  相似文献   

6.
Anatomically shaped osteochondral constructs for articular cartilage repair   总被引:8,自引:0,他引:8  
Few successful treatment modalities exist for surface-wide, full-thickness lesions of articular cartilage. Functional tissue engineering offers a great potential for the clinical management of such lesions. Our long-term hypothesis is that anatomically shaped tissue constructs of entire articular layers can be engineered in vitro on a bony substrate, for subsequent implantation. To determine the feasibility, this study investigated the development of bilayered scaffolds of chondrocyte-seeded agarose on natural trabecular bone. In a series of three experiments, bovine chondrocytes were seeded in (1) cylindrical bilayered constructs of agarose and bovine trabecular bone, 0.53 cm2 in surface area and 3.2 mm thick, and were cultured for up to 6 weeks; (2) chondrocyte-seeded anatomically shaped agarose constructs reproducing the human patellar articular layer (area=11.7 cm2, mean THICKNESS=3.4 mm), cultured for up to 6 weeks; and (3) chondrocyte-seeded anatomically shaped agarose constructs of the patella (same as above) integrated into a corresponding anatomically shaped trabecular bone substrate, cultured for up to 2 weeks. Articular layer geometry, previously acquired from human cadaver joints, was used in conjunction with computer-aided design and manufacturing technology to create these anatomically accurate molds. In all experiments, chondrocytes remained viable over the entire culture period, with the agarose maintaining its shape while remaining firmly attached to the underlying bony substrate (when present). With culture time, the constructs exhibited positive type II collagen staining as well as increased matrix elaboration (Safranin O staining for glycosaminoglycans) and material properties (Young's modulus and aggregate modulus). Despite the use of relatively large agarose constructs partially integrated with trabecular bone, no adverse diffusion limitation effects were observed. Anatomically shaped constructs on a bony substrate may represent a new paradigm in the design of a functional articular cartilage tissue replacement.  相似文献   

7.
The compressive properties of human cancellous bone of the distal intracondylar femur in its wet condition were determined. Specimens were obtained from six cadaveric femora and were tested at a strain rate of 0.002, 0.10 and 9.16 sec−1. It was found that the compressive strength decreases with an increasing vertical distance from the joint. The highest compressive strength level was recorded in the posterior medial condyle. Correlations among the mechanical properties, the bulk specimen density and the bone mineral content yield (i) highly significant correlations between the compressive strength and the elastic modulus (ii) highly significant correlations between the compressive strength or the modulus of elasticity and the bulk specimen density (iii) a doubtful correlation between the compressive strength and the bone mineral content. All recorded graphs of the impact loaded specimens displayed several well defined stress peaks, unlike the graphs recorded at low loading rates. It can be concluded that upon impact loading the localized trabecular failure which is associated with each peak, does not affect the spongy bone's stress capacity in a detrimental way.  相似文献   

8.
Objective:Characterise the spatiotemporal trabecular and cortical bone responses to complete spinal cord injury (SCI) in young rats.Methods:8-week-old male Wistar rats received T9-transection SCI and were euthanised 2-, 6-, 10- or 16-weeks post-surgery. Outcome measures were assessed using micro-computed tomography, mechanical testing, serum markers and Fourier-transform infrared spectroscopy.Results:The trabecular and cortical bone responses to SCI are site-specific. Metaphyseal trabecular BV/TV was 59% lower, characterised by fewer and thinner trabeculae at 2-weeks post-SCI, while epiphyseal BV/TV was 23% lower with maintained connectivity. At later-time points, metaphyseal BV/TV remained unchanged, while epiphyseal BV/TV increased. The total area of metaphyseal and mid-diaphyseal cortical bone were lower from 2-weeks and between 6- and 10-weeks post-SCI, respectively. This suggested that SCI-induced bone changes observed in the rat model were not solely attributable to bone loss, but also to suppressed bone growth. No tissue mineral density differences were observed at any time-point, suggesting that decreased whole-bone mechanical properties were primarily the result of changes to the spatial distribution of bone.Conclusion:Young SCI rat trabecular bone changes resemble those observed clinically in adult and paediatric SCI, while cortical bone changes resemble paediatric SCI only.  相似文献   

9.
Chemotherapy-induced bone growth arrest and osteoporosis are significant problems in paediatric cancer patients, and yet how chemotherapy affects bone growth remains unclear. This study characterised development and resolution of damage caused by acute chemotherapy with antimetabolite 5-fluorouracil (5-FU) in young rats in the growth plate cartilage and metaphyseal bone, two important tissues responsible for bone lengthening. In metaphysis, 5-FU induced apoptosis among osteoblasts and preosteoblasts on days 1-2. In growth plate, chondrocyte apoptosis appeared on days 5-10. Interestingly, Bax was induced prior to apoptosis and Bcl-2 was upregulated during recovery. 5-FU also suppressed cell proliferation on days 1-2. While proliferation returned to normal by day 3 in metaphysis, it recovered partially on day 3, overshot on days 5-7 and normalised by day 10 in growth plate. Histologically, growth plate heights decreased by days 4-5 and returned normal by day 10. In metaphysis, primary spongiosa height was also reduced, mirroring changes in growth plate thickness. In metaphyseal secondary spongiosa, a reduced bone volume was observed on days 7-10 as there were fewer but more separated trabeculae. Starting from day 4, expression of some cartilage/bone matrix proteins and growth factors (TGF-beta1 and IGF-I) was increased. By day 14, cellular activity, histological structure and gene expression had returned normal in both tissues. Therefore, 5-FU chemotherapy affects bone growth directly by inducing apoptosis and inhibiting proliferation at growth plate cartilage and metaphyseal bone; after the acute damage, bone growth mechanism can recover, which is associated with upregulated expression of matrix proteins and growth factors.  相似文献   

10.
There are conflicting views on whether collagen X is a purely structural molecule, or regulates bone mineralization during endochondral ossification. Mutations in the human collagen α1(X) gene (COL10A1) in Schmid metaphyseal chondrodysplasia (SMCD) suggest a supportive role. But mouse collagen α1(X) gene (Col10a1) null mutants were previously reported to show no obvious phenotypic change. We have generated collagen X deficient mice, which shows that deficiency does have phenotypic consequences which partly resemble SMCD, such as abnormal trabecular bone architecture. In particular, the mutant mice develop coxa vara, a phenotypic change common in human SMCD. Other consequences of the mutation are reduction in thickness of growth plate resting zone and articular cartilage, altered bone content, and atypical distribution of matrix components within growth plate cartilage. We propose that collagen X plays a role in the normal distribution of matrix vesicles and proteoglycans within the growth plate matrix. Collagen X deficiency impacts on the supporting properties of the growth plate and the mineralization process, resulting in abnormal trabecular bone. This hypothesis would accommodate the previously conflicting views of the function of collagen X and of the molecular pathogenesis of SMCD.  相似文献   

11.
The inherited brittle bone disease osteogenesis imperfecta (OI) is commonly caused by COL1A1 and COL1A2 mutations that disrupt the collagen I triple helix. This causes intracellular endoplasmic reticulum (ER) retention of the misfolded collagen and can result in a pathological ER stress response. A therapeutic approach to reduce this toxic mutant load could be to stimulate mutant collagen degradation by manipulating autophagy and/or ER‐associated degradation. Since carbamazepine (CBZ) both stimulates autophagy of misfolded collagen X and improves skeletal pathology in a metaphyseal chondrodysplasia model, we tested the effect of CBZ on bone structure and strength in 3‐week‐old male OI Col1a2 +/p.G610C and control mice. Treatment for 3 or 6 weeks with CBZ, at the dose effective in metaphyseal chondrodysplasia, provided no therapeutic benefit to Col1a2 +/p.G610C mouse bone structure, strength or composition, measured by micro‐computed tomography, three point bending tests and Fourier‐transform infrared microspectroscopy. In control mice, however, CBZ treatment for 6 weeks impaired femur growth and led to lower femoral cortical and trabecular bone mass. These data, showing the negative impact of CBZ treatment on the developing mouse bones, raise important issues which must be considered in any human clinical applications of CBZ in growing individuals.  相似文献   

12.
Clefts between the body and the greater horn of the hyoid bone are reconstructed graphically from histological sections of hyoid bones from children aged 5 months up to 7 a. In 3 cases, the cleft cranially is enclosed by perichondrium at the lateral and medial sides; caudally the perichondral tissue is continued by cartilage on the medial side. On the lateral side, the perichondrium reaches more caudally. In 1 case, the cleft is enclosed on its medial side by cartilage only. In all cases examined, the medial wall is thicker than the lateral. The formation of a joint cleft between the body and the greater horn of the hyoid bone seems to be predominant in the lateral and caudal parts of that diarthrosis.  相似文献   

13.
As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (ie., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.  相似文献   

14.
Abstract: Quantitative autoradiography of [3H]MK-801 binding was used to characterize regional differences in N -methyl- d -aspartate (NMDA) receptor pharmacology in rat CNS. Regionally distinct populations of NMDA receptors were distinguished on the basis of regulation of [3H]MK-801 binding by the NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP). CPP inhibited [3H]MK-801 binding in outer cortex (OC) and medial cortex (MC) with apparent K i values of 0.32-0.48 μ M , whereas in the medial striatum (MS), lateral striatum (LS), CA1, and dentate gyrus (DG) of hippocampus, apparent K i values were 1.1-1.6 μ M . In medial thalamus (MT) and lateral thalamus (LT) the apparent K i values were 0.78 μ M . In the presence of added glutamate (3 μ M ), the relative differences in apparent K i values between regions maintained a similar relationship with the exception of the OC. Inhibition of [3H]MK-801 binding by the glycine site antagonist 7-chlorokynurenic acid (7-ClKyn) distinguished at least two populations of NMDA receptors that differed from populations defined by CPP displacement. 7-ClKyn inhibited [3H]MK-801 binding in OC, MC, MS, and LS with apparent K i values of 6.3-8.6 μ M , whereas in CA1, DG, LT, and MT, K i values were 11.4-13.6 μ M . In the presence of added glycine (1 μ M ), the relative differences in apparent K i values were maintained. Under conditions of differential receptor activation, regional differences in NMDA receptor pharmacology can be detected using [3H]MK-801 binding.  相似文献   

15.
A three-dimensional finite element analysis of the upper tibia   总被引:1,自引:0,他引:1  
A three-dimensional finite element model of the proximal tibia has been developed to provide a base line for further modeling of prosthetic resurfaced tibiae. The geometry for the model was developed by digitizing coronal and transverse sections made with the milling machine, from one fresh tibia of average size. The load is equally distributed between the medial and lateral compartments over contact areas that were reported in the literature. An indentation test has been used to measure the stiffness and the ultimate strength of cancellous bone in four cadaver tibiae. These values provided the statistical basis for characterising the inhomogeneous distribution of the cancellous bone properties in the proximal tibia. All materials in the model were assumed to be linearly elastic and isotropic. Mechanical properties for the cortical bone and cartilage have been taken from the literature. Results have been compared with strain gage tests and with a two-dimensional axisymmetric finite element model both from the literature. Qualitative comparison between trabecular alignment, and the direction of the principal compressive stresses in the cancellous bone, showed a good relationship. Maximum stresses in the cancellous bone and cortical bone, under a load which occurs near stance phase during normal gait, show safety factors of approximately eight and twelve, respectively. The load sharing between the cancellous bone and the cortical bone has been plotted for the first 40 mm distally from the tibial eminence.  相似文献   

16.
This study investigated the relationships between trabecular microstructure and elastic modulus, compressive strength, and suture anchor pullout strength. Twelve fresh-frozen humeri underwent mechanical testing followed by micro-computed tomography (μCT). Either compression testing of cylindrical bone samples or pullout testing using an Arthrex 5 mm Corkscrew was performed in synthetic sawbone or at specific locations in the humerus such as the greater tuberosity, lesser tuberosity, and humeral head. Synthetic sawbone underwent identical mechanical testing and μCT analysis. Bone volume fraction (BVF), structural model index (SMI), trabecular thickness (TbTh), trabecular spacing (TbSp), trabecular number (TbN), and connectivity density were compared against modulus, compressive strength, and pullout strength in both materials. In cadaveric bone, modulus showed correlations to all of the microstructural properties, while compressive and pullout strength were only correlated to BVF, SMI, and TbSp. The microstructure of synthetic bone differed from cadaveric bone as SMI and TbTh showed little variation across the densities tested. Therefore, SMI and TbTh were the only microstructural properties that did not show correlations to the mechanical properties tested in synthetic bone. This study helps identify key microstructure–property relationships in cadaveric and synthetic bone as well as illustrate the similarities and differences between cadaveric and synthetic bone as biomechanical test materials.  相似文献   

17.
Elastic modulus and strength of trabecular bone are negatively affected by osteoporosis and other metabolic bone diseases. Micro-computed tomography-based beam models have been presented as a fast and accurate way to determine bone competence. However, these models are not accurate for trabecular bone specimens with a high number of plate-like trabeculae. Therefore, the aim of this study was to improve this promising methodology by representing plate-like trabeculae in a way that better reflects their mechanical behavior. Using an optimized skeletonization and meshing algorithm, voxel-based models of trabecular bone samples were simplified into a complex structure of rods and plates. Rod-like and plate-like trabeculae were modeled as beam and shell elements, respectively, using local histomorphometric characteristics. To validate our model, apparent elastic modulus was determined from simulated uniaxial elastic compression of 257 cubic samples of trabecular bone (4mm×4mm×4mm; 30μm voxel size; BIOMED I project) in three orthogonal directions using the beam-shell models and using large-scale voxel models that served as the gold standard. Excellent agreement (R(2)=0.97) was found between the two, with an average CPU-time reduction factor of 49 for the beam-shell models. In contrast to earlier skeleton-based beam models, the novel beam-shell models predicted elastic modulus values equally well for structures from different skeletal sites. It allows performing detailed parametric analyses that cover the entire spectrum of trabecular bone microstructures.  相似文献   

18.
Although adult skeletal morphological variation is best understood within the framework of age-related processes, relatively little research has been directed towards the structure of and variation in trabecular bone during ontogeny. We report here new quantitative and structural data on trabecular bone microarchitecture in the proximal tibia during growth and development, as demonstrated in a subadult archaeological skeletal sample from the Late Prehistoric Ohio Valley. These data characterize the temporal sequence and variation in trabecular bone structure and structural parameters during ontogeny as related to the acquisition of normal functional activities and changing body mass. The skeletal sample from the Fort Ancient Period site of SunWatch Village is composed of 33 subadult and three young adult proximal tibiae. Nondestructive microCT scanning of the proximal metaphyseal and epiphyseal tibia captures the microarchitectural trabecular structure, allowing quantitative structural analyses measuring bone volume fraction, degree of anisotropy, trabecular thickness, and trabecular number. The microCT resolution effects on structural parameters were analyzed. Bone volume fraction and degree of anisotropy are highest at birth, decreasing to low values at 1 year of age, and then gradually increasing to the adult range around 6-8 years of age. Trabecular number is highest at birth and lowest at skeletal maturity; trabecular thickness is lowest at birth and highest at skeletal maturity. The results of this study highlight the dynamic sequential relationships between growth/development, general functional activities, and trabecular distribution and architecture, providing a reference for comparative studies.  相似文献   

19.
Osteoprotegerin (OPG) and the receptor activator of nuclear factor (NF)-kB ligand (RANKL) are key regulators of osteoclastogenesis. The present study had the main aim of showing the localization of OPG and RANKL mRNA and protein in serial sections of the rat femurs and tibiae by immunohistochemistry (IHC) and in situ hybridization (ISH). The main results were: (1) OPG and RANKL mRNA and protein were co-localized in the same cell types, (2) maturative/hypertrophic chondrocytes, osteoblasts, lining cells, periosteal cells and early osteocytes were stained by both IHC and ISH, (3) OPG and RANKL proteins were mainly located in Golgi areas, and the ISH reaction was especially visible in active osteoblasts, (4) immunolabeling was often concentrated into cytoplasmic vacuoles of otherwise negative proliferative chondrocytes; IHC and ISH labeling increased from proliferative to maturative/hypertrophic chondrocytes, (5) the newly laid down bone matrix, cartilage-bone interfaces, cement lines, and trabecular borders showed light OPG and RANKL immunolabeling, (6) about 70% of secondary metaphyseal bone osteocytes showed OPG and RANKL protein expression; most of them were ISH-negative, (7) osteoclasts were mostly unstained by IHC and variably labeled by ISH. The co-expression of OPG and RANKL in the same bone cell types confirms their strictly coupled action in the regulation of bone metabolism.  相似文献   

20.
An alternative concept of the relationship between morphological and elastic properties of trabecular bone is presented and applied to human tissue from several anatomical locations using a digital approach. The three-dimensional morphology of trabecular bone was assessed with a microcomputed tomography system and the method of directed secants as well as the star volume procedure were used to compute mean intercept length (MIL) and average bone length (ABL) of 4 mm cubic specimens. Assuming isotropic elastic properties for the trabecular tissue, the general elastic tensors of the bone specimens were determined using the homogenization method and the closest orthotropic tensors were calculated with an optimization algorithm. The assumption of orthotropy for trabecular bone was found to improve with specimen size and hold within 6.1 percent for a 4 mm cube size. A strong global relationship (r2 = 0.95) was obtained between fabric and the orthotropic elastic tensor with a minimal set of five constants. Mean intercept length and average bone length provided an equivalent power of prediction. These results support the hypothesis that the elastic properties of human trabecular bone from an arbitrary anatomical location can be estimated from an approximation of the anisotropic morphology and a prior knowledge of tissue properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号