首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given increasing investments in ecological restoration around the globe, there is a need to develop standards of practice to improve professional training and encourage the highest quality of performance possible. Although professional certification is a mechanism for promoting and improving the profession, until now certification has not been available to individuals who practice ecological restoration. The Society for Ecological Restoration (SER) is launching a professional certification program in early 2017. The program requires professional experience, a knowledge base in five broad subject areas, understanding of the foundations of the profession, and adherence to a code of ethics. The SER certification program will certify both practitioners (Certified Ecological Restoration Practitioners [CERPs]) and practitioners‐in‐training (Certified Ecological Restoration Practitioners‐in‐training [CERPITs]).  相似文献   

2.
In response to our recent article (Higgs et al. 2018) in these pages, George Gann and his coauthors defended the Society for Ecological Restoration (SER) International Standards, clarified several points, and introduced some new perspectives. We offer this counter‐response to address some of these perspectives. More than anything, our aims are in sharpening the field of restoration in a time of rapid scaling‐up of interest and effort, and support further constructive dialogue going forward. Our perspective remains that there is an important distinction needed between “Standards” and “Principles” that is largely unheeded by Gann et al. (2018). We encourage SER to consider in future iterations of its senior policy document to lean on principles first, and then to issue advice on standards that meet the needs of diverse conditions and social, economic, and political realities.  相似文献   

3.
Over the last decade, several research and opinion pieces have challenged the tenets of restoration ecology but a lack of centralized data has impeded assessment of how scientific developments relate to on‐the‐ground restoration. In response, the Society for Ecological Restoration (SER) launched the Global Restoration Network (GRN) to catalog worldwide restoration efforts. We reviewed over 200 GRN projects to identify the goals governing restoration and the frequency with which they are measured. We used the SER Primer on Ecological Restoration to frame our analysis, categorizing goals by SER's attributes of restored ecosystems. We developed additional attributes to characterize goals not encompassed by the SER‐defined attributes. Nearly all projects included goals related to ecosystem form, namely similarity to reference conditions and the presence of indigenous species, and these goals were frequently measured. Most projects included goals related to ecosystem function, and many highlighted interactions between abiotic and biotic factors by either modifying abiotic conditions to support focal species or manipulating species to achieve desired ecosystem functions. Few projects had goals related to ecosystem stability, whereas the majority of projects had goals related to social values. Although less frequently measured, social goals were described as important for long‐term project success. In conclusion, science and practice frequently aligned on goals related to ecosystem composition and function, but scientific guidelines on resilience and self‐sustainability appear insufficient to guide practice. In contrast, the common inclusion of goals for human well‐being indicates that, if intended to advise practice, restoration guidelines should give direction on social goals.  相似文献   

4.
Evans and Davis claim the SER Standards use a “pure naturalness” model for restoration baselines and exclude most cultural ecosystems from the ecological restoration paradigm. The SER Standards do neither. The SER Standards consider both “natural” ecosystems (that are unequivocally not cultural) and “similar” cultural ecosystems as suitable reference models. Furthermore, Evans and Davis propose assessing whether a cultural ecosystem exhibits “good, bad, or neutral impacts from humans on ecosystems” as the basis for reference models. We argue that such an approach would overlook the indispensability of native ecosystem benchmarks to measure human impacts and provide a springboard for social‐ecological restoration.  相似文献   

5.
Traditionally, ecological restoration is based on re‐establishing patterns of vegetation communities with the expectation that wildlife will recolonize, restoring the ecological function. However, in many restoration projects, wildlife fails to recolonize, even when vegetation is restored, in many cases because revegetated habitats lack the critical features required by wildlife. We present a new approach to restoration, based on a detailed understanding of ecological process, the mechanisms by which wildlife respond to landscape patterns. Our animal‐centric approach involves measuring the risk‐sensitive decision‐making of individual animals as they balance searching for food, mates, and breeding sites with avoiding being eaten by predators and relates this to fine‐scale habitat and landscape structure. The outcome of these decisions can be measured in occupancy of habitat, the information on which conventional restoration is based. Incorporating landscape genetics allows retrospective assessment of the outcome of dispersal decisions by individual animals on a deeper time frame and at regional scales. Fine‐scale connectivity models can be parameterized with these multiscale spatial and temporal data to direct restoration efforts. We are translating this novel approach to practice in the large Midlands restoration project (4 years, AUD $6 million) in Tasmania, Australia, in partnership with Greening Australia. More than 200 years of intensive agricultural practice in this National Biodiversity Hotspot has resulted in extensive landscape modification, high densities of feral cats, and decline of many native mammals. Our research–practice partnership will alter the way that restoration is done, leading hopefully to successful restoration of wildlife, gene flow, and ecological function.  相似文献   

6.
Developing and strengthening a more mutualistic relationship between the science of restoration ecology and the practice of ecological restoration has been a central but elusive goal of SERI since its inaugural meeting in 1989. We surveyed the delegates to the 2009 SERI World Conference to learn more about their perceptions of and ideas for improving restoration science, practice, and scientist/practitioner relationships. The respondents' assessments of restoration practice were less optimistic than their assessments of restoration science. Only 26% believed that scientist/practitioner relationships were “generally mutually beneficial and supportive of each other,” and the “science–practice gap” was the second and third most frequently cited category of factors limiting the science and practice of restoration, respectively (“insufficient funding” was first in both cases). Although few faulted practitioners for ignoring available science, many criticized scientists for ignoring the pressing needs of practitioners and/or failing to effectively communicate their work to nonscientists. Most of the suggestions for bridging the gap between restoration science and practice focused on (1) developing the necessary political support for more funding of restoration science, practice, and outreach; and (2) creating alternative research paradigms to both facilitate on‐the‐ground projects and promote more mutualistic exchanges between scientists and practitioners. We suggest that one way to implement these recommendations is to create a “Restoration Extension Service” modeled after the United States Department of Agriculture's Cooperative Extension Service. We also recommend more events that bring together a fuller spectrum of restoration scientists, practitioners, and relevant stakeholders.  相似文献   

7.
Conservation and restoration interventions can be mutually reinforcing and are converging through an increased focus on social dimensions. This paper examines how to more effectively integrate the complementary goals of conservation and restoration of tropical forests. Forest conservation and restoration interventions are integral components of a broad approach to forest ecosystem and landscape management that aims to maintain and restore key ecological processes and enhance human well‐being, while minimizing biodiversity loss. The forest transition model provides a useful framework for understanding the relative importance of forest conservation and restoration interventions in different regions. Harmonizing conservation and restoration presents serious challenges for forest policy in tropical countries, particularly regarding the use and management of secondary forests, fallow vegetation, and forests degraded by logging and fire. Research to implement restoration more effectively in tropical regions can be stimulated by transforming questions that initially focused on conservation issues. Examination of papers published in Biotropica from 2000–2018 shows that most studies relevant to tropical forest conservation do not address forest restoration issues. Forest restoration studies, on the other hand, show a consistent association with conservation issues. There is much scope for further integration of conservation and restoration in research, practice, and policy. Securing a sustainable future for tropical forests requires developing and applying integrated approaches to landscape management that effectively combine knowledge and tools from multiple disciplines with practical experience and engagement of local stakeholders. Abstract in Portuguese is available with online material.  相似文献   

8.
The Society for Ecological Restoration's 2016 (SER) “International Standards for the Practice of Ecological Restoration” is a living document intended to guide restoration projects “anywhere in the world.” Given its intended global scope and in hopes of informing future editions, this document is critically assessed in light of the role people have played in ecosystems around the world. We argue that the Standards has an underlying nature–culture dichotomization that limits its applicability; in qualifying what it calls “cultural ecosystems” for rehabilitation, rather than restoration, the Standards privileges colonial visions of ecological restoration. We also discuss the Standards' representation of the ecological impacts and practices of indigenous groups. Whereas the Standards claims that preindustrial cultural ecosystems exist in states similar to unmodified areas, many historians, anthropologists, and paleoecologists would point out that preindustrial people sometimes had massive environmental impacts through agriculture, hydrological engineering, over‐hunting, living in dense urban environments, transporting species, burning on a scale capable of changing the climate, and other practices. Furthermore, the Standards does not discuss how the cultural goals of indigenous groups fit into the overall picture of ecological restoration. Future drafts of the Standards should more accurately frame the diverse roles people play in nature, and create global standards that account for the validity of cultural goals for ecological restoration.  相似文献   

9.
Science‐Driven Restoration: A Square Grid on a Round Earth?   总被引:3,自引:1,他引:2  
Is formal science necessarily an effective framework and methodology for designing and implementing ecological restoration programs? My experience as an ecologist in Hawaii suggests that even when scientific research programs are explicitly designed to guide and facilitate restoration, the culture of science, heterogeneity of nature, and real‐world complexities of implementing land management practices often limit the practical relevance of conventional scientific research. Although alternative models such as adaptive management and transdisciplinary science may facilitate research that more robustly models the real world, there is often little professional support or incentive to orient even these nonconventional research approaches toward actually solving on‐the‐ground problems. Thus, if one’s goal is to accomplish ecological restoration as quickly and efficiently as possible, a trial‐and‐error/intelligent tinkering–type approach might often be better than using more rigorous, data‐intensive scientific methodology. However, the sympatric implementation of ecological restoration and scientific research programs can lead to valuable synergies such as mutual logistical and financial support and the exchange of distinct forms of knowledge. The professional activities and mere presence of scientists can also greatly enhance a program’s prestige and visibility, which in turn can indirectly promote more and better ecological restoration. Improving our understanding of when formal science can directly assist restoration projects and when its value will more likely be synergistic and indirect could lead to better science, better ecological restoration, and better relationships between these two cultures.  相似文献   

10.
The SER Primer on Ecological Restoration provides a succinct introduction to, and overview of, the rapidly growing field of ecological restoration. The Primer was issued initially in 2002 by the Society for Ecological Restoration (SER) and reissued verbatim 2 years later in a more attractive format ( http://www.ser.org/resources;resources-detail-view/ser-international-primer-on-ecological-restoration ). A SER committee recently began deliberations to update the Primer, and much discussion is underway. As two of the Primer's principal authors, we were invited to share our views on how the Primer can be advantageously revised in the light of any changes or new insights since 2002. In particular, we were asked how the Primer might be modified to reflect the ways that ecological restoration address conservation issues raised by climate change and other rapid environmental shifts and global changes. We also touch on questions relating to the benefits of ecological restoration to human society, as this is an area where the Primer needs sharper focus. We have structured the following in a ‘Frequently Asked Questions’ format to highlight issues raised in the recent literature and to focus attention on other issues that merit consideration in the Primer revision process.  相似文献   

11.
Available evidence suggests that research in terrestrial restoration ecology has been dominated by the engineering and botanical sciences. Because restoration science is a relatively young discipline in ecology, the theoretical framework for this discipline is under development and new theoretical offerings appear regularly in the literature. In reviewing this literature, we observed an absence of in‐depth discussion of how soils, and in particular the ecology of soils, can be integrated into the developing theory of restoration science. These observations prompted us to assess the current role of soil ecological knowledge in restoration research and restoration practice. Although soils are universally regarded as critical to restoration success, and much research has included manipulations of soil variables, we found that better integration of soil ecological principles could still contribute much to the practice of ecosystem restoration. Here we offer four potential points of departure for increased dialog between restoration ecologists and soil ecologists. We hope to encourage the view that soil is a complex, heterogeneous, and vital entity and that adoption of this point of view can positively affect restoration efforts worldwide.  相似文献   

12.
The Society for Ecological Restoration (SER) published the second edition of its International Principles and Standards for the Practice of Ecological Restoration in 2019. We conducted a pan-Canadian study using semi-structured interviews with restoration professionals to explore the extent to which restoration practitioners are aware of the document and use it. Overall, we found that direct uptake of the document by practitioners was lower than expected, with approximately 37.7% of all participants that were both aware of and consulting the publication for guidance in their practice of ecological restoration. This is due in part to low awareness of the document itself, with only a small majority (56.5%) of interviewees being aware of it. Other reasons listed by practitioners such as the structure of the publication, its added value, and its suitability for on-the-ground work revealed why some individuals aware of the existence of the document still failed to consult it. Here, we present a more nuanced assessment of these observations and share our findings with the ecological restoration community to address this disconnection. With intensifying pressures to achieve restoration success internationally, SER's guidance is critical. We analyze why it seems guidance from SER is not being taken up as fully as it might, and ways in which future versions may be improved.  相似文献   

13.
The topic of aboveground-belowground linkages has seen much recent activity, resulting in several conceptual advances regarding plant-soil feedbacks, multitrophic interactions, and how organisms drive ecosystem processes. Although restoration ecology has been rapidly evolving as a scientific discipline, the principles that have developed regarding aboveground-belowground linkages have yet to be thoroughly integrated into it. In this review, we conceptually integrate the role of aboveground-belowground linkages with the principles of restoration ecology through a framework that transcends multiple levels of ecological organization, and illustrate its application through three examples: restoration of abandoned land, reversal of biological invasions, and restoration of natural disturbances. We conclude that this integration can greatly assist restoration ecology, through aiding identification of effective invention practices and prediction of ecosystem recovery.  相似文献   

14.
Natural capital degradation worldwide signals the growing need for larger investments in both nature conservation and ecosystem services provision and management. The role of large‐scale ecological restoration is a vital part of the work that is needed. One important way to advance the science, practice, and policy on ecological restoration is to develop and promote bilateral and multilateral cooperation among and within countries. In this article, we explore prospects for south–south cooperation for large‐scale ecological restoration. Emphasis is given to experience and expertise sharing, cofinancing, and codevelopment of new knowledge and know‐how for more effective policy and practice worldwide, especially in developing and newly industrialized countries.  相似文献   

15.
Restoration practitioners adopt a multiplicity of approaches that range from basic trial and error, and site‐specific efforts, to complex experimental designs that test cutting edge theoretical hypotheses. We classify these different strategies to understand how restoration is planned and executed, and to contribute to the discussion on certification and evaluation. We use Aldo Leopold's notion of “intelligent tinkering” as a basis for a typology of four different approaches to restoration based on four parameters: motivation, general strategy, method of inquiry, and temporal and spatial scales of the expected outcomes. We argue that efforts to restore a damaged ecosystem in a skilled and experimental manner should be called “professional intelligent tinkering” versus “amateur intelligent tinkering,” and “careless tinkering.” We compare these three types of tinkering, and a more formal “scientific approach.” In professional intelligent tinkering, interventions and adjustments are done in a logical and careful manner, and with a methodical, experimental mindset. In contrast to the scientific approach, intelligent tinkering does not necessarily follow a formal experimental procedure, with replications and controls that allow extrapolation, nor is it driven by the motivation to publish in peer‐reviewed journals. Rather, it is primarily driven by a desire to solve site‐specific problems even in the absence of sufficient ecological knowledge to apply previously tested knowledge and techniques. We illustrate three approaches with three on‐going restoration projects in southeastern Brazil, two of which are small scale, and one of which is very large scale.  相似文献   

16.
Restoration ecology struggles to mitigate human‐caused ecological damage. Non‐native species are a particular challenge. This article describes two restoration attempts following introduced species in California and then makes a radical culling proposal. Environmental regulations, legal protections, and restoration projects are necessary to preserve ecosystem services, but such policies are often unpopular. Restorers often struggle when public opinion opposes evidence‐based practice, and this occurs particularly when the interventions involve killing mammals. Therefore, restoration efforts may benefit from more attention to how individuals perceive the acceptability of environmental policies and how to communicate policy options effectively for individuals to make informed decisions. Restoration ecology can follow the recent shift of medicine away from imperatives and toward informed patient choice. Restoration projects may benefit from recent advances in psychology and communication that help individuals make policy decisions that align with their personal values.  相似文献   

17.
In response to a critique by Higgs et al., this article clarifies the content and intent of the Society for Ecological Restoration's (SER) International Standards for the Practice of Ecological Restoration. Higgs et al. expressed concern that the SER Standards are not sufficiently underpinned by principles and risk disenfranchising some practitioners by narrowing what qualifies as ecological restoration. To demonstrate that these concerns are unfounded, we discuss the policy context and principles on which the Standards are based, its organizational structure, the innovative and inclusive approach used for development, and highlight significant errata by Higgs et al.  相似文献   

18.
Cabin (2007) asks whether formal science is an effective framework and methodology for designing and implementing ecological restoration programs. He argues that beyond certain ancillary benefits, restoration science has little of practical value to offer the practice of restoration. He goes on to suggest that restoration science most often represents an impediment to restoration practice because an “ivory tower” mentality limits the utility of experiments and diverts research dollars away from answering practical questions. His conclusion is that a nonscientific gardening approach may be more effective at restoring degraded ecosystems. We disagree with this perspective because: (1) restoration science has moved beyond exclusively using “square grids” placed on small patches of land to examine treatment effects on species representation; (2) Cabin’s critique greatly undervalues the contribution of science to restoration practice even where the input of restoration scientists is not directly evident; and (3) the practice of restoration is unlikely to advance beyond small‐scale and truly haphazard successes without well‐designed studies that can provide peer‐reviewed and widely accessible published information on the mechanisms underlying both successes and failures. We conclude that through integration with other disciplines, restoration science increasingly will provide novel approaches and tools needed to restore ecosystem composition, structure, and function at stand to landscape scales. As with the broader role of science in the human enterprise ( Sagan 1996 ), the contribution of restoration science to restoration practice can only grow as the discipline matures.  相似文献   

19.
Many ecosystems in the world are the result of a close interaction between local people and their environment, which are currently recognized as social‐ecological systems (SoES). Natural catastrophes or long‐standing social and political turmoil can degrade these SoES to a point where human societies are no longer autonomous and their supporting ecosystems are highly degraded. Here, we focus on the special case of the restoration of SoES that we call social‐ecological restoration (SoER), which is characterized as a restoration process that cannot avoid simultaneously dealing with ecological and social issues. In practice, SoER is analogous in many ways to the general principles of ecological restoration, but it differs in three key aspects: (1) the first actions may be initially intended for human groups that need to recover minimum living standards; (2) the SoER process would often be part of a healing process for local people where cultural values of ecosystems play an essential role; and (3) there is a strong dependency on external economic inputs, as the people belonging to the SoES may be incapable of reorganizing themselves on their own and supporting ecosystems can no longer self‐recover. Although it might not be desirable or necessary to call all restoration projects with a social component an SoER, the use of this concept may help in defining early restoration targets that may prevent conflicts among users in the long term. From the perspective of other disciplines, SoER would be more appropriately perceived as programs of “social‐ecological recovery” in the long term.  相似文献   

20.
In the spring of 2015, the Ecological Restoration Alliance (ERA) of Botanic Gardens held its fourth international meeting in Amman, Jordan, hosted by the Royal Botanic Garden of Jordan. Three regional working groups were launched, for the Middle East, East Africa, and Latin America, and new partnerships were forged to support ecological restoration initiatives led by botanic gardens in Jordan, Oman, and elsewhere. A one‐day public symposium, attended by over 100 people, was also held—the most significant public meeting on ecological restoration held to date in the Middle East. A communications strategy for regional outreach was agreed upon starting with the translation of several Society for Ecological Restoration (SER) foundation documents into Arabic. A peer‐reviewed translation of the SER International Primer on Ecological Restoration has already been produced by staff of the Royal Botanic Garden of Jordan and posted on the SER website. Further efforts will be made to promote public awareness in Jordan and regionally, in support of existing conservation and restoration programs, and to promote greater integration of ecological restoration programs in national and regional development schemes and government policies. Key action points were agreed upon to promote the practice of ecological restoration and the role of botanic gardens globally vis‐à‐vis policy makers and funders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号