首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grasslands used to be vital landscape elements throughout Europe. Nowadays, the area of grasslands is dramatically reduced, especially in industrial countries. Grassland restoration is widely applied to increase the naturalness of the landscape and preserve biodiversity. We reviewed the most frequently used restoration techniques (spontaneous succession, sowing seed mixtures, transfer of plant material, topsoil removal and transfer) and techniques used to improve species richness (planting, grazing and mowing) to recover natural-like grasslands from ex-arable lands. We focus on the usefulness of methods in restoring biodiversity, their practical feasibility and costs. We conclude that the success of each technique depends on the site conditions, history, availability of propagules and/or donor sites, and on the budget and time available for restoration. Spontaneous succession can be an option for restoration when no rapid result is expected, and is likely to lead to the target in areas with high availability of propagules. Sowing low-diversity seed mixtures is recommended when we aim at to create basic grassland vegetation in large areas and/or in a short time. The compilation of high-diversity seed mixtures for large sites is rather difficult and expensive; thus, it may be applied rather on smaller areas. We recommend combining the two kinds of seed sowing methods by sowing low-diversity mixtures in a large area and high-diversity mixtures in small blocks to create species-rich source patches for the spontaneous colonization of nearby areas. When proper local hay sources are available, the restoration with plant material transfer can be a fast and effective method for restoration.  相似文献   

2.
Although semi-natural grasslands in Europe are declining there is often a time delay in the local extinction of grassland species due to development of remnant populations, i.e., populations with an extended persistence despite a negative growth rate. The objectives of this study were to examine the occurrence of remnant populations after abandonment of semi-natural grasslands and to examine functional traits of plants associated with the development of remnant populations. We surveyed six managed semi-natural grasslands and 20 former semi-natural grasslands where management ceased 60–100 years ago, and assessed species response to abandonment, assuming a space-for-time substitution. The response of species was related to nine traits representing life cycle, clonality, leaf traits, seed dispersal and seed mass. Of the 67 species for which data allowed analysis, 44 species declined after grassland abandonment but still occurred at the sites, probably as remnant populations. Five traits were associated with the response to abandonment. The declining but still occurring species were characterized by high plant height, a perennial life form, possession of a perennial bud bank, high clonal ability, and lack of dispersal attributes promoting long-distance dispersal. Traits allowing plants to maintain populations by utilizing only a part of their life cycle, such as clonal propagation, are most important for the capacity to develop remnant populations and delay local extinction. A considerable fraction of the species inhabiting semi-natural grasslands maintain what is most likely remnant populations after more than 60 years of spontaneous succession from managed semi-natural grasslands to forest.  相似文献   

3.
Restored grasslands comprise an ever‐increasing proportion of grasslands in North America and elsewhere. However, floristic studies of restored grasslands indicate that our ability to restore plant communities is limited. Our goal was to assess the effectiveness of restoration seeding for recovery of key plant community components on former exotic, cool‐season pastures using a chronosequence of six restoration sites and three nearby remnant tallgrass prairie sites in West‐Central Iowa. We assessed trends in Simpson's diversity and evenness, richness and abundance of selected native and exotic plant guilds, and mean coefficient of conservatism (mean C). Simpson's diversity and evenness and perennial invasive species abundance all declined with restoration site age. As a group, restoration sites had greater richness of native C3 species with late phenology, but lower richness and abundance of species with early phenology relative to remnant sites. Total native richness, total native abundance (cover), mean C, and abundance of late phenology C3 plants were similar between restoration and remnant sites. Observed declines in diversity and evenness with restoration age reflect increases in C4 grass abundance rather than absolute decreases in the abundance of perennial C3 species. In contrast to other studies, restoration seeding appears to have led to successful establishment of tallgrass prairie species that were likely to be included in seeding mixtures. While several floristic measures indicate convergence of restoration and remnant sites, biodiversity may be further enhanced by including early phenology species in seeding mixes in proportion to their abundance on remnant prairies.  相似文献   

4.
In this survey, we studied the response of plant functional traits to calcareous grassland restoration in the Calestienne region, Southern Belgium (restoration protocol: forest clear-cutting followed by grazing at all sites). We considered traits related to dispersal, establishment, and persistence that integrate the main challenges of plants to re-establish and survive in restored areas. Functional traits were compiled from databases and compared among (i) pre-restoration and young restoration forests; (ii) restoration areas of different ages; and (iii) old restorations and reference grasslands. The following questions were addressed: (i) What is the early response (2–4 years) in terms of plant functional trait following one restorative clear-cut event? (ii) What plants functional trait responses occur from restorative management (i.e., sheep and goat grazing)? (iii) Which differences still persist between the oldest restored parcels (10–15 years), and the historical reference grasslands? Forest clear-cuts induced several changes among functional traits, including decreased mean seed mass and certain vegetative traits (i.e., decreased phanerophytes, branching species; and increased short lifespan species i.e., annuals and biennials). During restorative management, clonal, epizoochorous and autumn germinating species were favored. Despite numerous other changes during this phase, many differences remained compared to reference grasslands. In particular, geophytes, mycorrhizal and evergreen species abundance were not approaching reference grassland values. The observed pattern helped to draw inferences on the possible mechanisms operating under vegetation recovery following restorative forest clear-cut and subsequent management were identified and described in this study. Results indicated grazing was an important factor, which increased epizoochorous species, and autumn germinating taxa that filled niches in vegetation opened by summer grazing animals. Finally, differences between old restoration and reference grasslands emphasized that management should focus on reduction in soil fertility, and geophyte rhizomatous grasses. Long-term monitoring is vital to assess if management plans are effective in the complete restoration of species functional trait assemblages.  相似文献   

5.
After habitat restoration, species need to recolonize from existing populations. The ability of species to recolonize restored habitats likely depends on their traits. This study aimed to test if species traits and isolation from source habitat can explain the presence of insects in restored grasslands. We surveyed the occurrence of hoverflies and bees in 14 restored seminatural pastures as well as in intact seminatural grasslands in the surrounding landscape. We tested how connectivity, time since restoration, and species traits influence if species that are present in the surrounding landscape also occur in restored pastures. Solitary bee species present in the landscape were less likely to occur in restored pastures compared to bumblebees and hoverflies. The occurrence of bumblebees, but not solitary bees or hoverflies, decreased with time since restoration. The occurrence of solitary bees increased but the occurrence of hoverflies decreased with high connectivity. Migratory hoverflies were more likely to occur in restored pastures than nonmigratory hoverflies, especially in pastures with low connectivity. Among both bumblebees and solitary bees, the occurrence was influenced by nesting traits, with the lowest occurrence of parasitic species and of species digging nests in the ground. The subset of the landscape's species pool that occurs in restored pastures has a contrasting set of traits compared with species in intact source habitats. Both mobility and resource use act as filters that influence the assembly of pollinator communities after restoration. A full recovery of pollinator communities is more likely if source populations are available nearby.  相似文献   

6.
Large‐scale (circa 500 ha) restoration of species‐rich dry grasslands was conducted using a high‐diversity regional seed mixture in the White Carpathians Protected Landscape Area and Biosphere Reserve, Czech Republic, Central Europe. After sowing, the restored grasslands were regularly mown. Vegetation was analyzed at sites restored 1–12 years ago and compared with that of ancient, extremely species‐rich grasslands nearby. Nearly all (98%) sown target species successfully established and nearly half of unsown target species established spontaneously, partly dependent on distance to the ancient grasslands. Early mowing in the first half of June appeared to support species diversity and broad‐leaved forbs at the expense of competitive grasses. Using a regional seed mixture appeared to be an effective way of restoring dry grasslands and is especially recommended in the proximity of still existing ancient grasslands where spontaneous establishment of unsown target species may reinforce the success of restoration more easily.  相似文献   

7.
Revegetation in semiarid road embankments is not always successful because most of the sown species disappear and only a few survive. To improve hydroseeding success, there is a need to understand the underlying ecological processes that determine the outcome of sown species in restoration works.The objective of this work is to determine the relative importance of different factors in determining the final species composition after sowing in road embankments and with this aim, we conducted three different experiments: (1) experimental sowing in road embankments to determine species performance in field conditions; (2) greenhouse sowings, with the same species than the road embankment experiment, to study the effect of ecological filters (water stress and plant coexistence) on the performance of the species; and (3) analysis of relations between plant traits of the sown species (specific seed mass and specific plant biomass) and sowing success and competitive abilities in the greenhouse experiment. Relative success of the species in the embankments was compared with the relative success of the same species in greenhouse experiments and with the seed density sown in the road embankments.Plant coexistence, water stress and plant traits affected aboveground plant biomass production per species in the greenhouse experiment. However, the effects of plant traits on aboveground plant biomass were lower than the effect of plant coexistence but higher than the effect of water stress. The performance of the species in the water stress monoculture treatment at the greenhouse correlated positively with the performance of the species in the field 2 years after they were hydroseeded, thus indicating that water stress was the most influencing factor on species performance in road embankments. At the same time, plant traits as specific seed mass and plant biomass indirectly affected plant performance in the field since they affected aboveground plant biomass in the greenhouse experiment. On the contrary, species coexistence and seed density at sowing had influence on species performance in the road embankments neither 1 nor 2 years after hydroseeding.  相似文献   

8.
Recent loss of plant species richness in Swedish semi-natural grasslands has led to an increase in grassland recreation and restoration. To increase the establishment of declining species favoured by grazing and to re-establish original species richness, seed sowing has been discussed as a conservation tool. In this study, I examined to what extent seed sowing in former arable fields increases species richness and generates a species composition typical of semi-natural grasslands. Six grassland species favoured by grazing (target species) and six generalist species favoured by ceased grazing, were studied in a seed-addition experiment. Four different seed densities were used on four different grassland categories, two grazed former arable fields, one continuously grazed grassland and one abandoned grassland. Target and generalist species emerged in all grassland categories, but seedling emergence was higher in the grazed than in the abandoned grassland. Target species had higher emergence in the two grasslands with the longest grazing continuity. Seedling emergence and frequency of established plants of each target species were positively associated. The largest fraction of seeds germinated at an intermediate sowing density, 20–50 seeds/dm2, suggesting that aggregation of seeds positively affects emergence up to a certain threshold. In conclusion, artificial seed sowing may induce the recreation of typical grassland communities on former arable fields, which may be an important contribution to increase the total grassland area and species richness in the landscape.  相似文献   

9.
Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life‐history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life‐history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life‐history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life‐history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large‐scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.  相似文献   

10.
The species richness of grasslands generally cannot be fully restored after changes in management. Some species with small statures and basal leaf rosettes can be lost forever. The same species, however, seem to possess the traits necessary for successful re-colonization – they produce small, easily dispersable seeds, numerous seedlings and have lasting seed banks. We tested the hypothesis that plants in species-rich grasslands can be characterized by a negative correlation between their competitive ability and potential for generative regeneration, i.e. by a competition-colonization trade-off. An analysis of the traits of 95 grassland species supported this hypothesis. We then conducted a manipulative experiment in three different meadow communities in the Bílé Karpaty Mts. The experiment involved characterizing species traits during periods of different grassland management regimes in the years 1997–2000 and comparing these with the original management regime, which was restored between 2000 and 2003. We found out that the hypothesis only holds true for the pooled dataset for all three communities. When the individual meadow communities were analyzed separately, plant traits other than those responsible for the competition-colonization trade-off appear to be characteristic of responsive species, e.g. shoot lifespan or phenology. Our results imply that despite the general trade-offs found in large comparative studies, the plant response in a specific community is constrained by the local species pool.  相似文献   

11.
During recent decades, many studies have shown that the successful restoration of species-rich grasslands is often seed-limited because of depleted seed banks and limited seed dispersal in modern fragmented landscapes. In Europe, commercial seed mixtures, which are widely used for restoration measures, mostly consist of species and varieties of non-local provenance. The regional biodiversity of a given landscape, however, can be preserved only when seeds or plants of local provenance are used in restoration projects. Furthermore, the transfer of suitable target species of local provenance can strongly enhance restoration success.We review and evaluate the success of currently used near-natural methods for the introduction of target plant species (e.g. seeding of site-specific seed mixtures, transfer of fresh seed-containing hay, vacuum harvesting, transfer of turves or seed-containing soil) on restoration sites, ranging from dry and mesic meadows to floodplain grasslands and fens. Own data combined with literature findings show species establishment rates during the initial phase as well as the persistence of target species during long-term vegetation development on restoration sites.In conclusion, our review indicates that seed limitation can be overcome successfully by most of the reviewed measures for species introduction. The establishment of species-rich grasslands is most successful when seeds, seed-containing plant material or soil are spread on bare soil of ex-arable fields after tilling or topsoil removal, or on raw soils, e.g. in mined areas. In species-poor grasslands without soil disturbance and on older ex-arable fields with dense weed vegetation, final transfer rates were the lowest. For future restoration projects, suitable measures have to be chosen carefully from case to case as they differ considerably in costs and logistic effort. Long-term prospects for restored grassland are especially good when management can be incorporated in agricultural systems.  相似文献   

12.
Grassland restoration on arable land is the second most implemented compensation measure in Germany to counteract impacts of infrastructural projects on nature. Most grassland restoration has been carried out using standardized commercial seed mixtures with large amounts of perennial generalists, cultivars and seeds of non-local origin. To evaluate whether this current practice is appropriate for developing regional types of species-rich mesophile grasslands, we analyzed four widely used treatments in a real-world setting (48 plots): (1) sowing a non-site-specific herb-poor mixture; (2) sowing a non-site-specific herb-enriched mixture; (3) sowing a site-specific herb-enriched mixture; and (4) spontaneous regeneration. After up to nine years, restored sites differed from target grasslands in: (1) number of species; (2) abundance and dominance of target species; and (3) dominance structure. Sown fields were dominated by sown species from the beginning. Because most differences were due to increasing cover of a small number of sown species, we found little development toward regional types of species-rich mesophile grasslands. In contrast, species composition on spontaneously regenerated sites changed to a greater degree and showed gradual development toward target grasslands. The limiting factor for successful restoration on all sites was availability of propagules. On sown sites, dominance patterns - particularly of Festuca rubra cultivars - had a negative effect on immigration and development of target species. For future restoration practice, we strongly recommend avoiding standardized commercial non-local seed mixtures. In particular, highly competitive cultivars should never be used. Even spontaneous regeneration should be preferred over standardized mixtures. However, in species-poor environments enrichment with selected species is necessary to reach target state.  相似文献   

13.
Aims Species aggregation is commonly seen in plant communities and may increase diversity by causing intraspecific competition to exceed interspecific competition. One potential source of this spatial aggregation is seed dispersal but it is unclear to what extent aggregated seed distributions affect plant diversity in real communities. Using a field experiment, I tested whether uniform or aggregated seed arrival alters community structure and whether these effects vary with sowing density.Methods The experiment consisted of two spatial seeding treatments (uniform and aggregated) that were fully crossed with three seed density treatments. Sixty, 3 × 4-m plots were arrayed in a low-diversity grassland located in Kansas, USA. Each plot was divided into forty-eight, 0.5 × 0.5-m patches. For aggregated seeding treatments, each of the 15 species was sown into three randomly selected patches within the plot (3×15 = 45). To create a uniform species arrival but control for the seed addition method, all 15 species were sown into 45 individual patches (with three patches remaining unsown) within each plot. Seed mass for each species was held constant at the plot scale between uniform or aggregated treatments within a given level of the sowing density treatment. After two growing seasons, plant density was quantified for all sown species in 15 randomly selected patches from each plot.Important findings I found evidence for shifts in community structure in response to the different spatial seeding patterns. The evenness of added species was higher under aggregated than uniform sowing patterns. There was no detectable effect of aggregated seed sowing on species richness at 3.75 m 2 scale. However, when species richness was extrapolated to larger scales (11.25 m 2), aggregated sowing was predicted to have greater richness than uniform sowing. Effects of seed aggregation on community structure were apparent only at moderate to high sowing rates, yet the latter are within the range of measured seed dispersal in similar grasslands. Additionally, as sowing density increased, seed mass became an increasingly effective predictor of relative abundances for added species, but only under uniform sowing patterns supporting the idea that aggregated dispersal may buffer weaker (smaller seeded) species from competition during colonization. This is the first experiment to show that aggregated seed dispersal patterns can increase at least some components of plant diversity in undisturbed grasslands and suggests that previous seed dispersal experiments, which utilize uniform seed sowing, may underestimate the potential effect of dispersal on plant community structure.  相似文献   

14.
Traits are important for understanding how plant communities assemble and function, providing a common currency for studying ecological processes across species, locations, and habitat types. However, the majority of studies relating species traits to community assembly rely upon vegetative traits of mature plants. Seed traits, which are understudied relative to whole‐plant traits, are key to understanding assembly of plant communities. This is particularly true for restored communities, which are typically started de novo from seed, making seed germination a critical first step in community assembly and an early filter for plant establishment. We experimentally tested the effects of seed traits (mass, shape, and embryo to seed size ratio) and phylogeny on germination response in 32 species commonly used in prairie grassland restoration in the Midwestern USA, analyzing data using time‐to‐event (survival) analysis. As germination is also influenced by seed dormancy, and dormancy break treatments are commonly employed in restoration, we also tested the effects of two pretreatments (cold stratification and gibberellic acid application) on time to germination. Seed traits, phylogeny, and seed pretreatments all affected time to germination. Of all traits tested, variables related to seed shape (height and shape variance) best predicted germination response, with high‐variance (i.e., pointier and narrower) seeds germinating faster. Phylogenetic position (the location of species on the phylogenetic tree relative to other tested species) was also an important predictor of germination response, that is, closely related species showed similar patterns in time to germination. This was true despite the fact that all measured seed traits showed phylogenetic signal, therefore phylogeny provided residual information that was not already captured by measured seed traits. Seed traits, phylogenetic position, and germination pretreatments were important predictors of germination response for a suite of species commonly used in grassland restoration. Shape traits were especially important, while mass, often the only seed trait used in studies of community assembly, was not a strong predictor of germination timing. These findings illustrate the ecological importance of seed traits that are rarely incorporated into functional studies of plant communities. This information can also be used to advance restoration practice by guiding restoration planning and seed mix design.  相似文献   

15.
Large scale restoration using local high-diversity seed mixture combined with turf transfer was applied on ex-arable land in the Morava River floodplain in the western Slovakia in the years 1999–2012. The post-restoration vegetation development was recorded during 12 years after the restoration using floristic records per restored polygons with cover estimation in simple 3-degree scale. Temporal changes in species composition were evaluated by gradient analysis and number of characteristic grassland and ruderal species on restored sites was analysed by general linear models. Species composition changed gradually towards the species composition typical for species-rich floodplain grasslands, but the trajectory was not straightforward and several irregularities were observed. They were probably induced by extreme weather events (drought, floods). The decrease in ruderal species and increase in the number of typical floodplain grassland species were observed, when floodplain grassland species permanently outcompeted ruderal species since 8th year after the restoration. However the development in large scale was slower, than expected from previous small-scale experiments, it is evident, that combination of local seed mixture sowing with a turf transfer is a feasible method for the restoration of species-rich floodplain grasslands from arable land.  相似文献   

16.
Extensively managed semi-natural grasslands represent species-rich habitats and therefore play a key role for the maintenance of biodiversity in agricultural areas. In marginal and poorly accessible areas, the traditional management of grassland is frequently abandoned, which leads to the spread of forest. In Southern Switzerland, terraced vineyards (a special grassland type) and terraced grasslands are part of the cultural heritage and local biodiversity hotspots. Yet, many of them are overgrown by forest. In the past years, several abandoned terraced vineyards and grasslands have been restored by removing the forest, rebuilding the walls and re-introducing the traditional management. We examined restoration success by assessing plant species richness, diversity and species composition in both the aboveground vegetation and soil seed bank in (1) restored, (2) abandoned for 25–50 years, and (3) permanently used areas of six terraced vineyards and six terraced grasslands. Plant species richness and diversity were reduced and species composition altered in the aboveground vegetation of abandoned vineyards and grasslands compared to the permanently used and restored ones. However, species richness, Shannon-diversity and species composition of the aboveground vegetation did not differ between restored and permanently used areas, indicating a successful restoration of the vegetation 10–15 years after restoration. In abandoned vineyards, species richness of plants emerging from the soil seed bank was slightly higher than in permanently used and restored vineyards. No difference in seedling species richness was found between abandoned, permanently used and restored terraced grasslands. Our results showed that the soil seed bank played a minor role for the re-establishment of the above-ground vegetation. We assume that the large species pool in the surroundings and the presence of dispersal vectors are essential for the successful passive restoration of abandoned grassland in this region.  相似文献   

17.
The plant life cycle is often affected by animal–plant interactions. In insect‐pollinated plants, interaction with pollinators is very important. When pollen transfer due to a lower abundance of pollinators limits seed production, selection pressures on plant traits related to plant attraction to pollinators might occur, e.g. on flowering phenology, height or number of flowerheads. Landscape changes (e.g. habitat fragmentation or changed habitat conditions) may cause plant–pollinator systems to lose balance and consequently affect population dynamics of many plant species. We studied the relationship between measured plant traits, environmental variables and pollinator preferences in Scorzonera hispanica (Asteraceae), a rare perennial, allogamous herb of open grasslands. We estimated the pollen limitation by comparing seed set of supplemental‐pollinated plants with that of open‐pollinated ones. Pollinators selected plants based on position within the locality (isolated plants close to trees) rather than on their traits. In spite of a high proportion of undeveloped seeds on the plants, we demonstrated that they are not pollen limited. Instead, seed set and weight of seeds was correlated with plant size traits (height and flowerhead number), with larger plants producing more and larger seeds. This suggests that the studied plants are likely resource limited. Overall, the results suggest that pollinators are not a selection factor in this system, in contrast to studies on various plant species, including self‐compatible species of the Asteraceae. The lack of any effect of pollinators in the system may be caused by a strong negative effect of ungulate herbivores, which could play a decisive role in functioning of the system.  相似文献   

18.
A number of studies show contrasting results in how plant species with specific life‐history strategies respond to fragmentation, but a general analysis on whether traits affect plant species occurrences in relation to habitat area and isolation has not been performed. We used published data from forests and grasslands in north‐central Europe to analyse if there are general patterns of sensitivity to isolation and dependency of area for species using three traits: life‐span, clonality, and seed weight. We show that a larger share of all forest species was affected by habitat isolation and area as compared to grassland species. Persistence‐related traits, life‐span and clonality, were associated to habitat area and the dispersal and recruitment related trait, seed weight, to isolation in both forest and grassland patches. Occurrence of clonal plant species decreased with habitat area, opposite to non‐clonal plant species, and long‐lived plant species decreased with grassland area. The directions of these responses partly challenge some earlier views, suggesting that further decrease in habitat area will lead to a change in plant species community composition, towards relatively fewer clonal and long‐lived plants with large seeds in small forest patches and fewer clonal plants with small seeds in small grassland patches. It is likely that this altered community has been reached in many fragmented European landscapes consisting of small and isolated natural and semi‐natural patches, where many non‐clonal and short‐lived species have already disappeared. Our study based on a large‐scale dataset reveals general and useful insights concerning area and isolation effects on plant species composition that can improve the outcome of conservation and restoration efforts of plant communities in rural landscapes.  相似文献   

19.
Questions: Are traits related to the performance of plant species in restoration? Are the relationships between traits and performance consistent across the functional groups of annual forbs, perennial forbs and grasses? Do the relationships between traits and performance depend on neighboring functional groups? Location: A former agricultural field, being restored to native upland prairie, in the Willamette Valley of western Oregon, USA. Methods: Twenty‐eight native species, representing three functional groups, were sown in seven different combinations. Eleven functional traits were measured from plants in the laboratory and in the field. Correlations between individual traits and performance variables were measured and regression techniques used to determine which sets of traits were most strongly related to performance. Results: Sets of traits explained up to 56% of variation in cover, and up to 48% of variation in establishment frequency. The relationships between traits and performance were influenced by functional group identity; the functional group identity of neighboring species also influenced species' cover and the relationships between traits and cover. Species' establishment rate in monoculture was the trait most strongly correlated to both establishment and cover in mixtures. In multi‐trait models, annual forb functional group identity was strongly related to establishment in mixtures, and height, leaf weight ratio at 7 d and seed mass were strongly related to cover. Conclusions: Multiple‐trait models should be a useful way of predicting the performance of species prior to sowing in restoration. The functional group identity of each species and the other species being sown may need to be taken into account when making predictions.  相似文献   

20.
Persistence of restored populations depends on growth, reproduction, dispersal, local adaptation, and a suitable landscape pattern to foster metapopulation dynamics. Although the negative effects of habitat fragmentation on plant population dynamics are well understood, particularly in grasslands, the population traits that control grassland restoration are less known. We reviewed the use of population traits for evaluating grassland restoration success based on 141 publications (1986–2015). The results demonstrated that population demography was relatively well‐assessed but detailed studies providing information on key stages of the life cycle were lacking despite their importance in determining population viability. Vegetative and generative performances have been thoroughly investigated, notably the components of plant fitness, such as reproductive output, while genetic and spatial population structures were largely ignored. More work on the population effects of ecological restoration would be welcomed, particularly with a focus on population genetics. Targeted species were principally common and dominant natives, or invasive plants while rare or threatened species were poorly considered. Evaluation of ecological restoration should be conducted at different scales of ecological complexity, but so far, communities and ecosystems are over represented, and more focus should be directed towards a population approach as population traits are essential indicators of restoration success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号