首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Avian frugivores historically played important roles as seed dispersers across the Hawaiian Islands, but presently, the ‘ōma‘o (Myadestes obscurus) is the only extant native frugivore in the wild on the Island of Hawaii. During recent decades, the introduced generalist Japanese White‐eye (Zosterops japonicus) has become the most common bird in Hawaii. The movements of avian frugivores largely dictate how far seeds get dispersed and into what kinds of microhabitats. This study compares the movement patterns and diet of the ‘ōma‘o to the Japanese White‐eye to understand how a native differs from a non‐native frugivore in the type and distances of seeds dispersed. Radiotelemetry was conducted on nine ‘ōma‘o and nine Japanese White‐eyes in a system of natural forest fragments (kīpuka) created by lava flows. Japanese White‐eyes disperse seeds approximately twice as far as ‘ōma‘o; during the time of gut passage, ‘ōma‘o move a mean distance of 98.1 m, and Japanese White‐eyes move 170.1–194.8 m. However, the ‘ōma‘o disperses the seeds of at least seven different native fruit species compared with two dispersed by Japanese White‐eyes. Japanese White‐eyes were found to disperse seeds smaller than 1.5 mm, whereas the ‘ōma‘o dispersed seeds up to 6 mm in diameter. Despite their ecological differences, both birds distribute certain seeds within and among kīpuka and likely facilitate primary succession of fruiting plants in the young lava matrix. However, this study suggests that if the ‘ōma‘o were extirpated, a smaller‐bodied generalist cannot entirely substitute for the ecological role played by the native frugivore.  相似文献   

2.
Seed dispersal constitutes a pivotal process in an increasingly fragmented world, promoting population connectivity, colonization and range shifts in plants. Unveiling how multiple frugivore species disperse seeds through fragmented landscapes, operating as mobile links, has remained elusive owing to methodological constraints for monitoring seed dispersal events. We combine for the first time DNA barcoding and DNA microsatellites to identify, respectively, the frugivore species and the source trees of animal‐dispersed seeds in forest and matrix of a fragmented landscape. We found a high functional complementarity among frugivores in terms of seed deposition at different habitats (forest vs. matrix), perches (isolated trees vs. electricity pylons) and matrix sectors (close vs. far from the forest edge), cross‐habitat seed fluxes, dispersal distances and canopy‐cover dependency. Seed rain at the landscape‐scale, from forest to distant matrix sectors, was characterized by turnovers in the contribution of frugivores and source‐tree habitats: open‐habitat frugivores replaced forest‐dependent frugivores, whereas matrix trees replaced forest trees. As a result of such turnovers, the magnitude of seed rain was evenly distributed between habitats and landscape sectors. We thus uncover key mechanisms behind “biodiversity–ecosystem function” relationships, in this case, the relationship between frugivore diversity and landscape‐scale seed dispersal. Our results reveal the importance of open‐habitat frugivores, isolated fruiting trees and anthropogenic perching sites (infrastructures) in generating seed dispersal events far from the remnant forest, highlighting their potential to drive regeneration dynamics through the matrix. This study helps to broaden the “mobile‐link” concept in seed dispersal studies by providing a comprehensive and integrative view of the way in which multiple frugivore species disseminate seeds through real‐world landscapes.  相似文献   

3.
The approach of the birds to use physical and alimentary resources in degraded and modified natural habitats is an important aspect of their adaptation. This study was undertaken during 2016-2017 at forty habitats in the Moulouya plain, Morocco to examine behavioral diet, habitat use and foraging ecology of turtle dove, Streptopelia turtur. We monitored turtle doves in four major plots namely cereal plots, lucerne farms, apple orchards, and stations in the Ansgmir River covering 40 habitats. Digestive tract contents were also identified and evaluated for 68 Turtle Doves shot by hunters during two consecutive years. The results showed that the turtle doves use a variability of feeding habitats. The cereal cultivation seemed to be more preferable habitat for feeding especially in the month of May, the first breeding phase of the year. But, during the months of August and July, the riverbanks were the preferred habitat for turtle doves. The diet of this species is polyphagous and diverse with a granivorous tendency. Diet analysis showed that soft wheat and barley seeds constituted 44.53% and 38.74% respectively followed by barley seeds with 38.74% and sand stones (9.16%) of the seeds eaten by Turtle Doves. However, moderate proportion of elements (7.32%) remained undefined. All these aspects, including the variability of feeding habitats and the wide diet seem to be an adaptive strategy followed by turtle dove to counter the degradation and the modification of its natural feeding habitats.  相似文献   

4.
Fragmentation of natural habitats can be detrimental for species if individuals fail to cross habitat boundaries to reach new locations, thereby reducing functional connectivity. Connectivity is crucial for species shifting their ranges under climate change, making it important to understand factors that might prevent movement through human‐modified landscapes. In tropical regions, rain forests are being fragmented by agricultural expansion, potentially isolating populations of highly diverse forest‐dependent species. The likelihood of crossing habitat boundaries is an important determinant of species dispersal through fragmented landscapes, and so we examined movement across rain forest‐oil palm plantation boundaries on Borneo by using relatively mobile nymphalid butterflies as our model study taxon. We marked 1666 individuals from 65 species, and 19 percent (100/527) of recaptured individuals crossed the boundary. Boundary crossing was relatively frequent in some species, and net movement of individuals was from forest into plantation. However, boundary crossing from forest into plantation was detected in less than 50 percent (12/28) of recaptured species and was dominated by small‐sized butterfly species whose larval host plants occurred within plantations. Thus, while oil palm plantations may be relatively permeable to some species, they may act as barriers to the movement of forest‐dependent species (i.e., species that require rain forest habitat to breed), highlighting the importance of maintaining forest connectivity for conserving rain forest species.  相似文献   

5.
Seed dispersal by Red fox (Vulpes vulpes), Stone marten (Martes foina), and Wild boar (Sus scrofa) was analyzed in an extensively degraded mosaic landscape in Sierra Nevada (SE Spain). The main objective was to determine whether seed dispersal by mammals was related to habitat degradation within a mosaic of adjacent degraded patches mixed with native forest and thereby to determine the potential role of mammals as seed dispersers in degraded landscape units. For three consecutive years, mammal feces were collected in the fruit production period, extracting all seeds of woody species found therein and analyzing their viability. Feces were collected in three different plots for each of five different landscape units: shrubland, native forest, and dense, cleared, and fenced reforestation stands. Seeds from 16 woody species (which represent more than a half of the total fleshy‐fruited woody species available) were recorded, although some agrarian species are also introduced in a low percentage of the scats. Seeds showed a high viability rate for all dispersed species, irrespective of the mammal disperser. No differences in species composition appeared in the overall landscape units or in the seed density between degraded habitats. Due to the small patch size, the high viability of dispersed seeds, and the large home range of the large mammals, these three animal species act as efficient seed dispersers for a diverse assemblage of woody plant species regardless of the habitat type within this degradation framework. This fact has important consequences for the biodiversity recuperation in these degraded habitats, principally in pine plantations.  相似文献   

6.
Traditional approaches to the study of species persistence in fragmented landscapes generally consider a binary classification of habitat being suitable or unsuitable; however, the range of human‐modified habitats within a region may offer a gradient of habitat suitability (or conservation value) for species. We identified such a gradient by comparing bird assemblages among contrasting land uses (pine plantations of different age, annual crops, clear cuts and cattle pastures) in the Upper Parana Atlantic forest. Bird assemblages and vegetation structure were characterized in an extensive area of 4400 km2 in Argentina and Paraguay during the breeding seasons of 2005–2010. Similarity of bird assemblages between anthropogenic habitats and the native forest and the proportion of forest species increased with vegetation vertical structure, while the proportion of open‐area species decreased. As a consequence, mature tree plantations were the most suitable habitats for forest species and were mainly used by frugivores and bark insectivores. In contrast, open habitats were the least suitable habitat for forest species and were used primarily by insectivores. Human‐created habitats that are structurally complex can be used by a subset of forest species, and may improve functional connectivity and mitigate edge effects. The conservation of large tracks of native forests, however, is critical for the long‐term persistence of the entire bird assemblage, especially for native forest dependent species.  相似文献   

7.
Invasive species pose one of the greatest threats to biodiversity. This study investigates the extent to which human disturbance to natural ecosystems facilitates the spread of non‐native species, focusing on a small mammal community in selectively logged rain forest, Sabah, Borneo. The microhabitat preferences of the invasive Rattus rattus and three native species of small mammal were examined in three‐dimensional space by combining the spool‐and‐line technique with a novel method for quantifying fine‐scale habitat selection. These methods allowed the detection of significant differences for each species between the microhabitats used compared with alternative, available microhabitats that were avoided. Rattus rattus showed the greatest preference for heavily disturbed habitats, and in contrast to two native small mammals of the genus Maxomys, R. rattus showed high levels of arboreal behavior, frequently leaving the forest floor and traveling through the understory and midstory forest strata. This behavior may enable R. rattus to effectively utilize the complex three‐dimensional space of the lower strata in degraded forests, which is characterized by dense vegetation. The behavioral flexibility of R. rattus to operate in both terrestrial and arboreal space may facilitate its invasion into degraded forests. Human activities that generate heavily disturbed habitats preferred by R. rattus may promote the establishment of this invasive species in tropical forests in Borneo, and possibly elsewhere. We present this as an example of a synergistic effect, whereby forest disturbance directly threatens biodiversity and indirectly increases the threat posed by invasive species, creating habitat conditions that facilitate the establishment of non‐native fauna.  相似文献   

8.
Ecological restoration typically focuses on promoting vegetation recovery in degraded habitat or reintroducing endangered animals to enhance their regional or global persistence. Here, we argue that attention should also be devoted to vertebrate reintroductions in overhunted but floristically intact tropical forests in order to prevent insidious regime shifts in these systems. Growing evidence suggests that tropical forests deprived of seed‐dispersing animals exhibit replacement of fleshy fruiting trees by species with abiotic seed dispersal. Left unchecked, this process could eventually render the forest uninhabitable by frugivores through reduced density and diversity of their food plants. In tropical areas where hunting can be controlled, we contend that frugivore reintroduction, regulation of wild fruit harvest by humans, and outplanting of native fruiting trees should be deployed as management tools long before the systems are in need of traditional habitat restoration.  相似文献   

9.
Aim Urbanization and deforestation are important drivers of biodiversity change. However, long‐term changes in faunal communities within urbanizing regions are poorly understood. We investigated how well observed community changes in both space and time agree with expectations based on current paradigms in urban ecology. Location Greater Brisbane region, Australia. Methods We compared bird assemblages in two time‐periods 15 years apart, at multiple sites in remnant forest and residential suburbs across an urbanizing landscape. Differences in assemblage composition, species abundances and functional groupings were assessed within and between habitats. Results Compared with forest, suburbs in both time‐periods had over twice the total bird abundance, a different species composition, greater between‐site community similarity, a greater proportion of non‐native species and greater dominance by large‐bodied species. These differences corresponded with changes in sites whose habitat was converted from forest to suburb. Between time‐periods, abundances of 58% of suburban species changed significantly compared with those of 11% in forest. Increaser species outnumbered decreasers in suburbs, with the reverse in forest. Abundance of small‐bodied birds decreased 70% in suburbs and 20% in forest. Broad‐spectrum competitors and nest predators were common among suburban increasers. Among invasive species, the number of increasers was counterbalanced by decreasers. Both site‐scale species richness and between‐site community similarity increased to a small extent in both habitats. Main conclusions Species composition and ecological function of suburban bird communities were very dynamic. Suburban assemblages were neither a subset of forest species nor an increasingly non‐native compilation. Communities in large forest patches were comparatively stable. The notion of habitat‐specific species turnover better characterizes the nature of most changes than either species decline or homogenization, even though both of these were evident. There is considerable scope for careful urban planning, focused on both among‐ and within‐habitat variety, to sustain bird diversity in urbanizing landscapes.  相似文献   

10.
The ability of ecosystems to maintain their functions after disturbance (ecological resilience) depends on heterogeneity in the functional capabilities among species within assemblages. Functional heterogeneity may affect resilience by determining multiplicity between species in the provision of functions (redundancy) and complementarity between species in their ability to respond to disturbances (response diversity), but also by promoting the maintenance of biological information that enables ecosystems to reorganize themselves (ecological memory). Here, we assess the role of the components of the functional heterogeneity of a plant–frugivore assemblage on the resilience of seed dispersal to habitat loss. For three years, we quantified the distributions of fruits, frugivorous thrushes (Turdus spp.) and dispersed seeds, as well as frugivore diet and movement, along a gradient of forest cover in N Spain. The abundances and the spatial distributions of fruits and birds varied between years. The different thrushes showed similar diets but differed in spatial behavior and response to habitat loss, suggesting the occurrence of both functional redundancy and response diversity. Forest cover and fruit availability affected the spatial distribution of the whole frugivore assemblage. Fruit tracking was stronger in years when fruits were scarcer but more widespread across the whole fragmented landscape, entailing larger proportions of seeds dispersed to areas of low forest cover and open microhabitats. Rather than depending on redundancy and/or response diversity, seed dispersal resilience mostly emerged from the ecological memory conferred by the inter‐annual variability in fruit production and the ability of thrushes to track fruit resources across the fragmented landscape. Ecological memory also derived from the interaction of plants and frugivores as source organisms (trees in undisturbed forest), mobile links (birds able to disperse seeds into the disturbed habitat), and biological legacies (remnant trees and small forest patches offering scattered fruit resources across the landscape).  相似文献   

11.
Remote island ecosystems are vulnerable to human disturbance and habitat destruction, yet they often have limited capacity to revegetate degraded habitats, especially with native species. To revegetate degraded island habitats, practitioners often rely on importing non‐native species, thereby increasing the number of introduced species on islands. In this study, we investigated the effectiveness of sowing wild collected native seeds and locally sourced treatments for revegetating different eroded soil types (clay, peat, and sand) across the Falkland Islands. A seed mixture of 15 native species was sown with different supportive treatments (sheep dung, sheep dags [woolly off‐cuts], and geotextile matting [coir]) and their combinations. After 1 year, native seeds provided up to 70% plant cover and accrued 1.98 kg/m2 in biomass. Three key native species Elymus magellanicus, Poa flabellata, and Poa alopecurus occurred in 64, 50, and 50% of all sown plots. However, supportive treatments equally facilitated the colonization and establishment of non‐native species. At the same time, there was no difference in native plant cover and biomass across different treatments or soil types, although in the absence of supportive treatments there was little to no revegetation. Thus, locally sourced treatments (i.e. sheep dung and dags) may provide an equally effective but low‐cost alternative to imported treatments (i.e. geotextiles). We further discuss challenges of integrating revegetation using native seeds and livestock grazing on the Falkland Islands. Our study demonstrates that native species and local treatments can provide a rapid approach to revegetating degraded island habitats.  相似文献   

12.
Conservation often focuses on ‘ecologically intact’ habitats with little human influence. But where all such habitats have been lost or modified, identifying promising restoration targets is a key goal. We describe a direct approach to identify high conservation value targets using predictive distribution maps of taxa that, based on habitat affinity, ease of detection and abundance can be used to infer native species richness and prioritize conservation investment. We used 1169 avian point counts in a 1560 km2 study area, remote‐sensed data and models incorporating imperfect detectability to predict habitat occupancy in 18 widely‐distributed native birds; 12 of which were determined by experts to be positive indicators of old‐forest conditions. Forest‐association scores for these 12 species where then used as weights in a composite distribution map of the probability of community occurrence, which corresponded well with the occurrence of old forest stands mapped by aerial photography. Our results indicate that composite maps of widespread indicators improve site prioritization by incorporating the behavioural and demographic responses of a diverse range of indicators to variation in patch size, configuration and adjacent human land use.  相似文献   

13.
The once extensive native forests of New Zealand’s central North Island are heavily fragmented, and the scattered remnants are now surrounded by a matrix of exotic pastoral grasslands and Pinus radiata plantation forests. The importance of these exotic habitats for native biodiversity is poorly understood. This study examines the utilisation of exotic plantation forests by native beetles in a heavily modified landscape. The diversity of selected beetle taxa was compared at multiple distances across edge gradients between each of the six possible combinations of adjacent pastoral, plantation, clearfell and native forest land-use types. Estimated species richness (Michaelis–Menten) was greater in production habitats than native forest; however this was largely due to the absence of exotic species in native forest. Beetle relative abundance was highest in clearfell-harvested areas, mainly due to colonisation by open-habitat, disturbance-adapted species. More importantly, though, of all the non-native habitats sampled, beetle species composition in mature P. radiata was most similar to native forest. Understanding the influence of key environmental factors and stand level management is important for enhancing biodiversity values within the landscape. Native habitat proximity was the most significant environmental correlate of beetle community composition, highlighting the importance of retaining native remnants within plantation landscapes. The proportion of exotic beetles was consistently low in mature plantation stands, however it increased in pasture sites at increasing distances from native forest. These results suggest that exotic plantation forests may provide important alternative habitat for native forest beetles in landscapes with a low proportion of native forest cover.  相似文献   

14.
Seed dispersal by small primates may be particularly relevant in areas where populations of larger frugivores have been reduced or extinguished by hunting and/or habitat disturbance. In this context, the aim of this study was to evaluate the role of the golden-headed lion tamarin Leontopithecus chrysomelas as a seed disperser in Atlantic forest remnants in Brazil. To this end, we opportunistically collected feces deposited during observations on the feeding behavior of two groups of golden-headed lion tamarins ranging in the degraded areas of the Una Biological Reserve, Bahia, Brazil, from February 2006 to January 2007. We collected 587 fecal samples, of which 524 contained seeds from 24 plant species, distributed over 13 families. Disregarding seeds of<3 mm, the majority of seeds recovered were bromeliad seeds. In general, ingestion of seeds by golden-headed lion tamarins did not improve the germination proportion or decrease the germination delay of seeds, with the exception of Aechmea spp. seeds. The tamarins encountered different habitats during their daily activity period, while feeding and defecating. Consequently, some seeds were transported to different habitats including disturbed areas. Thus, the role of seed dispersal in combination with the daily movement pattern of L. chrysomelas contributes to the persistence of fruit plants and epiphyte species and to the natural regeneration process within Atlantic forest remnants.  相似文献   

15.
Large‐bodied frugivorous birds play an important role in dispersing large‐sized seeds in Neotropical rain forests, thereby maintaining tree species richness and diversity. Conversion of contiguous forest land to forest fragments is thought to be driving population declines in large‐bodied frugivores, but the mechanistic drivers of this decline remain poorly understood. To assess the importance of fragment‐level versus local landscape attributes in influencing the species richness of large‐bodied (>100 g) frugivorous birds, we surveyed 15 focal species in 22 forest fragments (2.7 to 33.6 ha, avg. = 16.0 ha) in northwest Ecuador in 2014. Fragment habitat variables included density of large trees, canopy openness and height, and fragment size; landscape variables included elevation and the proportion of tree cover within a 1 km radius of each fragment. At both the individual species level, and across the community of 12 species of avian frugivore we detected, there was higher richness and probability of presence in fragments with more tree cover on surrounding land. This tendency was particularly pronounced among some endangered species. These findings corroborate the idea that partially forested land surrounding fragments may effectively increase the suitable habitat for forest‐dwelling frugivorous birds in fragmented landscapes. These results can help guide conservation priorities within fragmented landscapes, with particular reference to retaining trees and reforesting to attain high levels of tree cover in areas between forest patches.  相似文献   

16.
Habitat spatial distribution, seasonal variation, and activity patterns influence changes in vertebrate assemblages over time. Terrestrial birds play major roles in the dynamics of tropical forests, but there are few effective methods to study these species due to their cryptic coloration and elusive behavior. We used camera‐trap data collected during 16 mo (February 2017–June 2018) to describe the terrestrial avifauna in southeastern Peru, assess to what extent the composition of terrestrial avifauna changes among seasons and across two major habitats (terra firme and floodplain forests), and determine daily activity patterns of terrestrial birds. We used overlap analyses to examine temporal co‐occurrence between ecologically similar and sympatric species. Camera traps recorded 16 species, including eight species in the family Tinamidae. Capture rates were highest for Pale‐winged Trumpeters (Psophia leucoptera; Psophiidae) and Gray‐fronted Doves (Leptolila rufaxilla; Columbidae). Species composition did not differ between habitats or seasons, and capture rates between habitats only differed for White‐throated Tinamous (Tinamus guttatus). Overlaps of activity patterns were high between ecologically similar species and species found in terra firme habitats (White‐throated Tinamous and Cinereous Tinamous, Crypturellus cinereus) and in both habitat types (Pale‐winged Trumpeters and Gray‐fronted Doves). Low numbers of captures of possibly locally rare or less abundant species hindered a complete analysis of spatial and seasonal patterns of terrestrial bird assemblages. We suggest a greater sampling effort and greater spatial replication to better understand the spatial and seasonal dynamics of the terrestrial avifauna. Further studies that assess the mechanisms that allow the coexistence of sympatric tinamous would be valuable, both in our study area and elsewhere. The use of camera traps in long‐term monitoring projects proved to be an effective tool for monitoring terrestrial birds, identifying cryptic and often rare animals to species level, and providing valuable ecological information at species and community levels.  相似文献   

17.
The Atlantic forest is one of the most diverse biomes on Earth but human activities are transforming this ecosystem into one of the most endangered. Most remnant old-growth rainforest is embedded within a mosaic of regenerating forest, tree plantations, pastures, and agricultural production. This has left a large percentage of the region’s endemic species threatened with extinction. Butterflies are considered as sensitive indicators of ecological conditions, especially in the Atlantic forest. This community can provide a window into animal response to restoration and how recovering habitats are used by native animal communities. The primary goal of this paper was to determine if butterfly communities respond to measures of structural recovery in naturally regenerating and re-forested pastures, and if this response increases the similarity of recovering butterfly communities relative to those of intact forests. Butterfly communities were sampled using two sampling methodologies, passive bait trapping and timed meander counts. These data sets were combined and correlated to assessment of habitat structure. We found that butterfly communities respond rapidly to structural changes in habitats as forest structure recovers on abandoned and restored pastures. While many species of mature forest inhabiting butterflies use regenerating forests as habitat, our young forests also retained an almost intact community of ruderal pasture inhabiting butterflies as well, indicating that these habitats retain many features of highly disturbed pastures. We suggest that measures of beta-diversity, which can be used to assess convergence in community structure, are far superior to the alpha-diversity measures that are typically used for assessing restoration recovery.  相似文献   

18.
In fragmented landscapes, species persistence within isolated habitat patches is governed by a myriad of species life‐history, habitat patch and landscape characteristics. We investigated the inter‐specific variation in non‐forest gap‐crossing abilities of an entire tropical forest‐dependent avifauna. We then related this measure of dispersal ability to species life‐history characteristics and occupancy data from 31 variable‐sized forest patches sampled within the same fragmented forest landscape. A total of 5436 gap‐crossing movements of 231 forest‐dependent bird species were observed across ten linear forest gaps of varying widths, adjacent to large areas of undisturbed forest. Species persistence in isolated fragments was strongly linked to gap‐crossing ability. The most capable gap‐crossers were medium to large‐bodied species in the large insectivore, frugivore and granivore guilds, matching the most prevalent subset of species in small forest patches. However, some competent gap‐crossing species failed to occur in small patches, and minimum forest‐patch area requirements were more important in determining patch occupancy for these species. Narrow forest gaps (4–70 m) created by roads and power‐lines may become territory boundaries, thereby eliminating home‐range gap‐crossing movements for many forest species, but permit rarer dispersal events. Wider gaps (>70 m) may inhibit gap‐crossing behaviour for all but the most vagile species. Although patch size and quality may be the most important factors in structuring species assemblages in forest fragments, our results show that the degree of patch isolation and permeability of the surrounding matrix also explain which species can persist in forest isolates. Reducing the number and width of forest‐dividing gaps; maintaining and/or creating forest corridors and increasing matrix permeability through the creation and maintenance of ‘stepping‐stone’ structures will maximise the species retention in fragmented tropical forest landscapes.  相似文献   

19.
There is an enormous body of literature on plant invasions, including many investigations of the types of introduced species that are most likely to invade natural ecosystems. In this study we turn invasion biology upside down, and ask what sort of native species colonise novel anthropogenic habitats such as roadside lawns, infrequently tended road shoulders, railway embankments and fire trails. We quantified species richness and cover in roadside lawns and infrequently tended road shoulders in five regions of New South Wales, Australia. The native vegetation in these regions included sclerophyll forest, fertile and infertile Eucalypt‐dominated woodlands, rainforest, and semi‐arid woodland. We performed a complementary survey of sites spanning five disturbance levels within the region containing sclerophyll forest vegetation. Although many non‐native species were present in disturbed, novel habitats, a total of 136 native species were also found. Most of these native species were in sites with low levels of disturbance (fire trails and railway embankments), but 35 native species were found to colonise roadside lawns, our most highly‐disturbed vegetation type. There was a significant negative relationship between the disturbance level in novel habitats and the number and cover of native species. Native species that colonised novel habitats were disproportionately likely be generalist species whose natural habitat includes both high and low light and high and low disturbance conditions. The native species colonising novel habitats also tended to have traits associated with a fast life‐history, including short stature and small seeds. A surprisingly high number of native plant species are colonising novel, anthropogenic habitats. Our findings highlight the potential importance of urban ecosystems for conservation and restoration biology.  相似文献   

20.
Kara L. Lefevre  F. Helen Rodd 《Oikos》2009,118(9):1405-1415
Fruit consumption by birds is an important ecological interaction that contributes to seed dispersal in tropical rainforests. In this field experiment, we asked whether moderate human disturbance alters patterns of avian frugivory: we measured fruit removal by birds in the lower montane rainforest of Tobago, West Indies, using artificial infructescences made with natural fruits from two common woody plants of the forest understory (Psychotria spp., Rubiaceae). Displays were mounted simultaneously in three forest habitats chosen to represent a gradient of increasing habitat disturbance (primary, intermediate and disturbed), caused by subsistence land use adjacent to a protected forest reserve. We measured the numbers of fruits removed and the effect of fruit position on the likelihood of removal, along with the abundances of all fruits and fruit‐eating birds at the study sites. Fruit removal was highly variable and there was not a significant difference in removal rate among forest habitats; however, the trend was for higher rates of removal from displays in primary forest. Canopy cover, natural fruit availability, and frugivore abundance were not good predictors of fruit removal. Birds preferred more accessible fruits (those proximal to the perch) in all habitats, but in disturbed forest, there was a tendency for distal fruits to be chosen more frequently than in the other forest types. One possible explanation for this pattern is that birds in disturbed forests were larger than those in other habitats, and hence were better able to reach the distal fruits. Coupled with differences in bird community composition among the forest types, this suggests that different suites of birds were removing fruit in primary versus disturbed forest. As frugivore species have different effectiveness as seed dispersers, the among‐habitat differences in fruit removal patterns that we observed could have important implications for plant species experiencing disturbance; these possible implications include altered amounts of seed deposition and seedling recruitment in Tobago's tropical rainforest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号