首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
Summary The establishment of direct seeded revegetation is well researched. However, there is little understanding of whether revegetation simplifies with age and loses many of the short‐lived understorey shrub species that provide critical resources for birds and other fauna, or regenerates sufficiently to be self‐sustaining. We sought to address this by investigating the change in structure and composition of 33 direct seeded sites established by Greening Australia between 1990 and 1996 in the Southern Tablelands of NSW. Transects were used to collect data describing the abundance and richness of woody plants in 1998 and 2008, and the abundance of woody plant regeneration in 2008. Our analysis showed the predicted number of live stems per metre declined exponentially from 5.8 stems/m (~17 000 stems/ha) at age 1.5 years to 1.5 stems/m (~4500 stems/ha) at age 17.5 years. Predicted woody plant species richness also declined with age, with a linear relationship. The number of species in the seed mix affected predicted woody plant species richness. However, large increases in seed mix richness produced relatively small increases in predicted species richness. Regeneration (new stems) was present at high levels (>100 stems/ha); however, 82% of regeneration appeared to originate from delayed germination of sown seed rather than seed from established plants (recruitment). The predicted abundance of new stems (delayed germination and recruitment) declined with age, and for a given age increased with row width. Young stands (11.5 years), seeded with wide rows (4 m), had approximately six times the new stems of similar aged stands seeded with narrow rows (2 m). Our results indicate direct seeded stands simplify with age, becoming less dense and containing fewer species. Maintaining a diversity of shrub species in direct seeded sites may therefore require ongoing disturbances (scarifying, scalping, fire, thinning) of established sites and changes to establishment techniques for new sites. We suggest further research to establish the status of soil seed banks in direct seeded sites, testing different forms of disturbances to trigger regeneration in older revegetation sites and establishing new sites using wide rather than narrow rows and seed mixes enriched with species from genera other than Eucalyptus or Acacia.  相似文献   

2.
Late successional, dense Artemisia tridentata (big sagebrush) stands restrict associated plant species production, resulting in a monotypic, shrub‐dominated community that threatens biodiversity preservation and ecosystem function. Traditional practices to control A. tridentata can severely reduce or temporarily eliminate A. tridentata and other plant species. Thinning A. tridentata with low rates of the herbicide tebuthiuron enhances herbaceous plant production, community structure, ecosystem functioning, and biodiversity. Tebuthiuron was applied at rates of 0.11–1.0 kg ai/ha to A. tridentata‐dominated plots at Ten Sleep (1979), Lander (1993), and Waltman (1993), Wyoming. Changes in A. tridentata canopy cover, associated plant species biomass, and community composition were evaluated 13 and 14 years post‐treatment at Ten Sleep, and 2 and 4 years post‐treatment at Lander and Waltman. At all sites A. tridentata canopy cover decreased proportionally with increased tebuthiuron rate. Biomass of grasses increased as shrub biomass and cover decreased with increasing tebuthiuron rate. Forb biomass varied between treatments across sample year and site. Shifts from shrub‐dominated control to grass‐dominated treatment plots were attributable to biomass differences of A. tridentata and 2–3 grass species among treatments. The number of plant species was not significantly different between treatments at any site. Similarity indexes revealed progressively greater dissimilar plant composition between the control and sequential treatment plots of increased tebuthiuron rate. Incremental rates of tebuthiuron produce gradual changes in plant species composition without reducing species richness, which may have utility in certain restoration projects.  相似文献   

3.
Understanding plant species diversity patterns and distributions is critical for conserving and sustainably managing tropical rain forests of high conservation value. We analyzed the alpha‐diversity, species abundance distributions, and relative ecological importance of woody species in the Budongo Forest, a remnant forest of the Albertine Rift in Uganda. In 32 0.5‐ha plots, we recorded 269 species in 171 genera and 51 families with stems of ≥2.0 cm in diameter at breast height (dbh). There were 53 more species with stems of ≥2.0 cm dbh than with stems of ≥10 cm dbh, of which 33 were treelets and 20 were multi‐stemmed shrubs. For both minimum stem diameter cut‐offs (i.e., ≥2 cm dbh vs. ≥10 cm dbh), the Fabaceae, Euphorbiaceae, Ulmaceae, and Meliaceae families and the species Cynometra alexandri, Lasiodiscus mildbraedii, and Celtis mildbraedii had the highest relative ecological importance. The relative ecological importance of some species and families changed greatly with the minimum stem diameter measured. Alpha‐diversity, species richness, and species abundance distributions varied across historical management practice types, forest community types, and as a function of minimum stem diameter. Species richness and Shannon–Weiner diversity index were greater for species with stems of ≥2.0 cm dbh than of ≥10 cm dbh. The decrease in species evenness with an increasing number of plots was accompanied by an increase in species richness for trees of both minimum diameters. This forest is characterized by a small number of abundant species and a relatively large proportion of infrequent species, many of which are sparsely distributed and with restricted habitats. We recommend lowering the minimum stem diameter measured for woody species diversity studies in tropical forests from 10 cm dbh to 2 cm dbh to include a larger proportion of the species pool.  相似文献   

4.
Question: How do the diversity, size structure, and spatial pattern of woody species in a temperate (Mediterranean climate) forest compare to temperate and tropical forests? Location: Mixed evergreen coastal forest in the Santa Cruz Mountains, California, USA. Methods: We mapped, tagged, identified, and measured all woody stems (≥1 cm diameter) in a 6‐ha forest plot, following Center for Tropical Forest Science protocols. We compared patterns to those found in 14 tropical and 12 temperate forest plots. Results: The forest is dominated by Douglas‐fir (Pseudotsuga menziesii) and three species of Fagaceae (Quercus agrifolia, Q. parvula var. shrevei, and Lithocarpus densiflorus), and includes 31 woody species and 8180 individuals. Much of the diversity was in small‐diameter shrubs, treelets, and vines that have not been included in most other temperate forest plots because stems <5‐cm diameter had been excluded from study. The density of woody stems (1363 stems ha?1) was lower than that in all but one tropical plot. The density of large trees (diameter ≥30 cm) and basal area were higher than in any tropical plot. Stem density and basal area were similar to most other temperate plots, but were less than in low‐diversity conifer forests. Rare species were strongly aggregated, with the degree of aggregation decreasing with abundance so that the most common species were significantly more regular than random. Conclusions: The patterns raise questions about differences in structure and dynamics between tropical and temperate forests; these need to be confirmed with additional temperate zone mapped plots that include small‐diameter individuals.  相似文献   

5.
Comparative information on the composition and diversity in tree species associations in Miombo woodland is limited. This study assessed how tree species associations across forest reserves of Miombo woodland in Malawi varied in composition and diversity concerning site factors and resource use disturbances under co‐management versus government management. Eighty nested circular plots, randomly selected in ArcGIS, were sampled to record stem diameter at breast height (DBH) of tree species: 0.04 ha for stems 5–29.9 cm DBH and 0.16 ha for stems ≥30 cm DBH. The recorded 109 tree species grouped into communities and 14 sub‐communities, using stem counts by species in TWINSPAN analysis. Sub‐divisions to level 5 showed eigenvalues ≥0.3, symbolising the stability of sub‐divisions. North/South sub‐divisions related to site factors; historical/current resource use influenced differences at levels 3–5. Species importance differed, indicating few important species in each sub‐community. Brachystegia and Julbernardia species showed importance across sub‐communities while Uapaca sansibarica in government management. Disturbances stimulated high species diversity. Recommendations include the need for a policy review towards group‐felling mature stands to stimulate regeneration and selective thinning of suppressed stems in stand development stages to maintain species diversity, productive recovery, diverse resource use value, and monitoring of harvesting impacts.  相似文献   

6.
Summary Broadscale land‐clearing in the Queensland Brigalow Belt has resulted in widespread decline in ecological values including biodiversity loss and impairment of ecosystem processes and functions. More than 90% of brigalow ecological communities, i.e. those that have Acacia harpophylla, F. Muell. ex Benth (Brigalow) as a dominant and co‐dominant, have been entirely cleared or severely degraded in recent decades. In spite of this wide‐ranging disturbance, partial ecological recovery may be possible in the Queensland Brigalow Belt through the retention of regrowth brigalow stands. Few studies, however, have quantitatively examined brigalow vegetation succession, particularly in the context of cost‐effective ecological restoration. This study used a chronosequence approach to examine how species richness, abundance and structure change in brigalow woodlands with years since clearing. Floristic and structural characteristics were surveyed in 18 brigalow stands, of varying years since clearing, in the southern Queensland Brigalow Belt. Linear models were fitted for years since clearing versus total number of woody species, tree cover, shrub cover, herbaceous cover and litter cover. Regrowth brigalow communities were found to follow the inhibition model of succession, with Acacia harpophylla assuming dominance. The linear models suggested that at least 90 years of recovery would be required post‐clearing, before regrowth woodlands regained 90% of the species richness and structural characteristics of mature woodlands. Management practices such as thinning the dominant species and allowing for the accumulation of logs and litter may be necessary for promoting recovery of vegetation diversity and structural heterogeneity.  相似文献   

7.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

8.
Aim To test whether a direct relationship exists between the relative abundance of woody plant genera and precipitation regime along the north–south climate gradient of the western Amazon. Location Lowland rain forests in the western Amazon. Methods Floristic data on 91 woody plant genera, from 39 0.1‐ha plots across the western Amazon, and precipitation data from a 0.5° global data set were used to test for correlations between plant relative abundance (defined as percentage number of stems ≥ 2.5 cm diameter at breast height for each woody plant genus per plot) and derived dry‐season variables. Moisture preference was then assessed in terms of pioneer and shade‐tolerant life‐history strategy. Results There were significant associations between the distribution of plant relative abundances and seasonal precipitation variables in 34% of genera analysed. Significant differences were identified in size‐class distribution between dry affiliates and generalists. Dry affiliates were not dominant in any size class in any plot type, whereas climate generalists dominated most of the size classes in the dry plots and the mid‐range size classes in the wet plots. Dry‐affiliate genera were a minority, even in dry forests. Wet‐affiliate genera were correlated with shade tolerance, whereas genera with no rainfall affiliation were often pioneers. Main conclusions The results suggest that moisture variable seasonality influences community composition in a manner that can be related to the life‐history trade‐off between shade tolerance and pioneer ranking. One possible reason for higher diversity in wetter forests is that high rainfall amplifies the niche space available to shade‐tolerant plants. Determining which plant groups are constrained by which environmental variables can contribute to our understanding of how forest composition may be changing now, and how it may change under future climate: if shade‐tolerant trees are also drought‐intolerant, community structure in wet forests may be more vulnerable to future increases in moisture stress.  相似文献   

9.
临安次生灌丛植物多样性对林火烈度空间异质性的响应   总被引:1,自引:0,他引:1  
以同一过火3a后临安市太阳镇天然次生灌丛为对象,采用样地调查法按不同林火烈度设置火干扰样地进行植物群落调查,以检验林分内部的林火烈度异质性是否与局部的植物多样性变化相关。结果表明:研究区共有高等植物83种,分属于38科67属,群落区系组成以亚热带科属为主,表现出常绿阔叶林已退化过渡到位于演替早期阶段的落叶次生灌丛群落的性质;低林火烈度对灌木层的树种组成有影响,但不明显;中烈度林火对灌木层的物种组成影响较大;低、中林火烈度下草本层的物种组成变化都很明显;灌木层的物种数和多样性指数都表现出低烈度火未火烧中烈度火的趋势;草本层的物种数、多样性指数和均匀度指数表现出中烈度火低烈度火未火烧的趋势;草本层的物种组成和多样性受林火烈度的影响较灌木层更大。研究表明次生灌丛群落过火区内部林火烈度异质性在初期会引起植物多样性的响应差异;低烈度火干扰可以增加次生灌丛生物多样性、促进群落更新;中烈度火干扰下木本植物物种多样性丧失较大,而草本植物多样性显著增加,不利于群落的正向演替。  相似文献   

10.
We evaluated habitat characteristics of East Usambara wetland forests. The abundance and species composition in the tree, shrub and herbaceous layers were enumerated in two sets of nested plots, one set in a natural wetland forest and the second in a wetland forest that had been disturbed by small‐scale gold mining activities. Each set had thirty‐six 1 m × 1 m plots for herbs, inside nine 5 m × 5 m plots for shrubs, in three 20 m × 20 m plots for trees. The habitat profile of herbaceous – shrub – tree layers was found to be sharply different from one obtained in previous studies at the surrounding nonwetland forests as were species composition and abundance. Unlike in the nonwetland forests, the herbaceous layer was thick, the shrub layer very thin and the woody species density and richness much lower. Disturbance significantly reduced woody cover and changed species composition in the herbaceous layer. Recovery of the woody vegetation was low. Wetland forests in the East Usambaras form a small fraction of the total area, but they are a unique biodiversity repository, they appear to be an important carbon dioxide sink and to reserve and purify water. They are sensitive to disturbance and need protection.  相似文献   

11.
Question: We investigated how cattle and European hares, the two most widespread exotic herbivores in Patagonia, affect species composition, life‐form composition and community structure during the first 6 years of vegetation recovery following severe burning of fire‐resistant subalpine forests and fire‐prone tall shrublands. We asked how the effects of introduced herbivores on post‐fire plant community attributes affect flammability of the vegetation. Location: Nahuel Huapi National Park, northwest Patagonia, Argentina Methods: We installed fenced plots to exclude livestock and European hares from severely burned subalpine forests of Nothofagus pumilio and adjacent tall shrublands of N. antarctica. The former is an obligate seed reproducer, whereas the latter and all other woody dominants of the shrubland vigorously resprout after burning. Results: Repeated measures ANOVA of annual measurements over the 2001‐2006 period indicate that cattle and hare exclusion had significant but complex effects on the cover of graminoids, forbs, climber species and woody species in the two burned community types. Significant interactions between the effects of cattle and hares varied by plant life forms between the two communities, which implies that their synergistic effects are community dependent. Conclusions: Following severe fires, the combined effects of cattle and hares inhibit forest recovery and favour transition to shrublands dominated by resprouting woody species. This herbivore‐induced trend in vegetation structure is consistent with the hypothesis that the effects of exotic herbivores at recently burned sites contribute to an increase in the overall flammability of the Patagonian landscape.  相似文献   

12.
Sonali Saha 《Ecography》2003,26(1):80-86
The regressive succession model hypothesizes tropical savanna-woodlands to be a degraded stage of primary deciduous forests. Species diversity, richness and evenness of woody species in savanna-woodlands, secondary deciduous forests and mature deciduous forests of central India were compared to test if the regressive succession explained pattern in species richness, diversity, functional diversity and basal area. At the plot scale (0.1 ha) secondary deciduous forests and savanna-woodlands had similar species diversity, a pattern not consistent with the regressive model of deciduous forest succession, and mature deciduous forests had greater species diversity and richness (p<0.05). When examined at a larger scale or community scale by pooling all plots within a community type, the trend in diversity persisted even with greater effort allocated to sampling of secondary deciduous forests. Species richness at the community scale was greatest in secondary deciduous forest as expected from species area relationship. The communities shared 28 woody species but the species composition was significantly different between the communities. I suggest that conservation of tropical deciduous forests based on regressive succession model is problematic.  相似文献   

13.
Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non‐native species density in a second‐growth ponderosa pine forest. Location: Challenge Experimental Forest, northern Sierra Nevada, California, USA. Methods: We compared the effects of mastication only, mastication with supplemental treatments (tilling and prescribed fire), hand removal, and a control on initial understory vegetation response using a randomized complete block experimental design. Each block (n=4) contained all five treatments and understory vegetation was surveyed within 0.04‐ha plots for each treatment. Results: While mastication alone and hand removal dramatically reduced the midstory vegetation, these treatments had little effect on understory richness compared with control. Prescribed fire after mastication increased native species richness by 150% (+6.0 species m2) compared with control. However, this also increased non‐native species richness (+0.8 species m2) and shrub seedling density (+24.7 stems m2). Mastication followed by tilling resulted in increased non‐native forb density (+0.7 stems m2). Conclusions: Mechanical mastication and hand removal treatments aided in reducing midstory fuels but did not increase understory plant diversity. The subsequent treatment of prescribed burning not only further reduced fire hazard, but also exposed mineral soil, which likely promoted native plant diversity. Some potential drawbacks to this treatment include an increase of non‐native species and stimulation of shrub seed germination, which could alter ecosystem functions and compromise fire hazard reduction in the long‐term.  相似文献   

14.
Shifting cultivation is a major form of agricultural practice in most parts of tropical regions worldwide. In places where the bush fallow period is excessively shortened or the period of cultivation is extended for too long, the rate of vegetation recovery and biodiversity on abandoned lands of shifting cultivation would decline. The recovery of the secondary plant communities could even be inhibited for a prolonged period because of grass occupancy. Because of the vital significance of the early recovery communities to secondary succession, we studied the community characteristics of early recovery vegetation on abandoned lands of shifting cultivation in Bawangling of Hainan Island. Measurements were made of the community composition and structure of early recovery vegetation. The sprouting abilities of different functional groups and different species in the same functional group, and the effect of the grass functional group on the composition and quantitative characteristics of tree and shrub functional groups were analyzed. Results indicated that only a few families, genera, or species apparently dominated in the early recovery vegetation on the abandoned lands of shifting cultivation and that deciduous species occurred with a rather high percentage in this early recovery community compared with the natural secondary or old growth forests. Smallsized individuals dominated the woody community. The abundance and basal area of sprouting stems for species in the tree functional group were greater than those of seeder stems, whereas the abundance and basal area of resprouters and seeders for species in the shrub functional group did not differ. The total abundance of stems for the community, stem abundances for species in tree or shrub functional groups, and for seeder or resprouter stems were all negatively correlated with coverage of the grass functional group. The mean sprouting ability in the tree functional group was greater than in the shrub functional group. The sprouting ability for different species in the same functional group was also significantly different.  相似文献   

15.
On the African continent, the population is expected to expand fourfold in the next century, which will increasingly impact the global carbon cycle and biodiversity conservation. Therefore, it is of vital importance to understand how carbon stocks and community assembly recover after slash‐and‐burn events in tropical second growth forests. We inventoried a chronosequence of 15 1‐ha plots in lowland tropical forest of the central Congo Basin and evaluated changes in aboveground and soil organic carbon stocks and in tree species diversity, functional composition, and community‐weighted functional traits with succession. We aimed to track long‐term recovery trajectories of species and carbon stocks in secondary forests, comparing 5 to 200 + year old secondary forest with reference primary forest. Along the successional gradient, the functional composition followed a trajectory from resource acquisition to resource conservation, except for nitrogen‐related leaf traits. Despite a fast, initial recovery of species diversity and functional composition, there were still important structural and carbon stock differences between old growth secondary and pristine forest, which suggests that a full recovery of secondary forests might take much longer than currently shown. As such, the aboveground carbon stocks of 200 + year old forest were only 57% of those in the pristine reference forest, which suggests a slow recovery of aboveground carbon stocks, although more research is needed to confirm this observation. The results of this study highlight the need for more in‐depth studies on forest recovery in Central Africa, to gain insight into the processes that control biodiversity and carbon stock recovery.  相似文献   

16.
The establishment and spread of non‐native, invasive shrubs in forests poses an important obstacle to natural resource conservation and management. This study assesses the impacts of the physical removal of a complex of woody invasive shrub species on deciduous forest understory resources. We compared leaf litter quantity and quality and understory light transmittance in five pairs of invaded and removal plots in an oak‐dominated suburban mature forest. Removal plots were cleared of all non‐native invasive shrubs. The invasive shrubs were abundant (143,456 stems/ha) and diverse, dominated by species in the genera Ligustrum, Viburnum, Lonicera, and Euonymus. Annual leaf litter biomass and carbon inputs of invaded plots were not different from removal plots due to low leaf litter biomass of invasive shrubs. Invasive shrub litter had higher nitrogen (N) concentrations than native species; however, low biomass of invasive litter led to low N inputs by litter of invasive species compared to native. Light transmittance at the forest floor and at 2 m was lower in invaded plots than in removal plots. We conclude that the removal of the abundant invasive shrubs from a native deciduous forest understory did not alter litter quantity or N inputs, one measure of litter quality, and increased forest understory light availability. More light in the forest understory could facilitate the restoration of forest understory dynamics.  相似文献   

17.
Much of the world's tropical forests have been affected by anthropogenic disturbance. These forests are important biodiversity reservoirs whose diversity, structure and function must be characterized across the successional sequence. We examined changes in structure and diversity along a successional gradient in the lowlands of New Guinea. To do this, we measured and identified all stems ≥5 cm diameter in 19 0.25 ha plots ranging in age from 3 to >50 yr since disturbance. We also measured plant functional traits related to establishment, performance, and competitive ability. In addition, we examined change in forest structure, composition, species diversity, and functional diversity through succession. By using rarefaction to estimate functional diversity, we compared changes in functional diversity while controlling for associated differences in stem and species density. Basal area and species density increased with stand age while stem density was highest in intermediate secondary forests. Species composition differed strongly between mature and secondary forests. As forests increased in basal area, community‐weighted mean wood density and foliar carbon increased, whereas specific leaf area and proportion of stems with exudate decreased. Foliar nitrogen peaked in medium‐aged forests. Functional diversity was highest in mature forests, even after accounting for differences in stem and species diversity. Our study represents one of the first attempts to document successional changes in New Guinea's lowland forest. We found robust evidence that as succession proceeds, communities occupy a greater range of functional trait space even after controlling for stem and species density. High functional diversity is important for ecological resiliency in the face of global change.  相似文献   

18.
Nothofagus spp. dominate the upper canopy of some rainforests on ultramafic soils in New Caledonia. These monodominant forests typically occur within, or contiguous with, larger areas of mixed‐canopy rainforest. In this study the structure, diversity and composition of six Nothofagus‐dominated plots were investigated, and comparisons were made with three adjacent mixed rainforest plots. Stand density and basal area (all stems ≥ 1.3 m high) in the Nothofagus plots were in the range 16,056–27,550 stems/ha and 43.1–69.9 m2/ha, respectively. There was no significant difference (P ≥ 0.05) in total stand density or basal area between the paired Nothofagus and mixed rainforests, but there were consistently fewer trees and less basal area of trees ≥ 40 cm d.b.h. in the Nothofagus forests. Species richness, species diversity (Shannon‐Wiener, based on basal area) and equitability (based on basal area) of trees ≥ 20 cm d.b.h. on 0.1 ha Nothofagus plots were in the range 4–17, 0.96–3.76 and 0.45–0.87, respectively. No significant differences (P ≥ 0.05) were recorded in these three parameters between the paired Nothofagus and mixed rainforests, although species diversity was consistently lower in the paired Nothofagus forests. Comparison of dominance by density and basal area indicated that although the uppermost canopy of the Nothofagus forests was dominated by Nothofagus (70–95%), the basal area and density contribution was ≤ 55% except at Col de Yaté (≈ 85%). Analysis of similarity indicated no significant difference in stand composition of trees ≥ 20 cm d.b.h. (following removal of Nothofagus from the data set) between Nothofagus and mixed rainforests using basal area, density or presence‐absence data. It is concluded that the Nothofagus‐dominated forests differ from the adjacent mixed rainforests mainly by (1) dominance of the uppermost canopy, without necessarily dominance of the stand by basal area or density, and (2) the smaller basal area contributed by large trees (all species).  相似文献   

19.
This study describes changes in woody vegetation in the Mwanihana forest, Udzungwa Mountains National Park, Tanzania, over an altitude range of 470–1700 m. Two methods, fixed‐ and variable‐area plots, are compared to elucidate altitudinal variation in tropical forest structure, diversity and community composition. Six 25 m × 100 m fixed area plots recorded a total of 2143 woody stems of ≥3 cm d.b.h. from 204 species. The 78 variable‐area plots recorded the nearest twenty trees of ≥20 cm d.b.h. to an objectively chosen point, giving a total of 1560 stems in 9.1 ha from 156 species. A linear trend of increasing stem density with altitude was seen for variable‐area plots. Species diversity is highest at high elevations. There was no clear zonation of elevational vegetation types. Restricted range taxa occur at all altitudes sampled. The study also revealed some methodological considerations. Bias in sample size and plot area can be tested by employing two sampling methods. Of the two methods used, fixed area plots are preferred as variable area plots are impractical in tangled understorey. Plot size must be controlled for in order to make reliable observations of diversity. Sampling along a continuous or near‐continuous altitudinal gradient with sufficient replication is also important.  相似文献   

20.
Question: What are the plant population‐ and community‐level effects of removal of dominant plant species in the shortgrass steppe? Location: The Shortgrass Steppe Long‐Term Ecological Research site in northern Colorado, USA. Methods: We annually measured plant cover and density by species for 10 years after a one‐time aboveground removal of the dominant perennial grass, Bouteloua gracilis. Removal and control plots (3 m × 3 m) were within grazed and ungrazed locations to assess the influence of grazing on recovery dynamics. Our analyses examined plant species, functional type, and community responses to removal, paying special attention to the dynamics of subdominant and rare species. Results: Basal cover of B. gracilis increased by an average of 1% per year, but there was significantly less plant cover in treatment compared to control plots for 5 years following removal. In contrast to the lower cover in treatment plots, the plant density (number of plants m?2) of certain subdominant perennial grasses, herbaceous perennial and annual forbs, a dwarf shrub, and cactus increased after removal of the dominant species, with no major change in species richness (number of species per 1 m × 1 m) or diversity. Subdominant species were more similar between years than rare species, but dominant removal resulted in significantly lower similarity of the subdominant species in the short term and increased the similarity of rare species in the long term. Conclusions: Removal of B. gracilis, the dominant perennial grass in the shortgrass steppe, increased the absolute density of subdominant plants, but caused little compensation of plant cover by other plants in the community and changes in species diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号