首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the effort to produce proteins coded by diverse genomes, structural genomics projects often must express genes containing codons that are rare in the production strain. To address this problem, genes expressing tRNAs corresponding to those codons are typically coexpressed from a second plasmid in the host strain, or from genes incorporated into production plasmids. Here we describe the modification of a series of LIC pMCSG vectors currently used in the high-throughput (HTP) production of proteins to include crucial tRNA genes covering rare codons for Arg (AGG/AGA) and Ile (AUA). We also present variants of these new vectors that allow analysis of ligand binding or co-expression of multiple proteins introduced through two independent LIC steps. Additionally, to accommodate the cloning of multiple large proteins, the size of the plasmids was reduced by approximately one kilobase through the removal of non-essential DNA from the base vector. Production of proteins from core vectors of this series validated the desired enhanced capabilities: higher yields of proteins expressed from genes with rare codons occurred in most cases, biotinylated derivatives enabled detailed automated ligand binding analysis, and multiple proteins introduced by dual LIC cloning were expressed successfully and in near balanced stoichiometry, allowing tandem purification of interacting proteins.  相似文献   

2.
Oh SK  Kim SB  Yeom SI  Lee HA  Choi D 《Molecules and cells》2010,30(6):557-562
Transient expression is an easy, rapid and powerful technique for producing proteins of interest in plants. Recombinational cloning is highly efficient but has disadvantages, including complicated, time consuming cloning procedures and expensive enzymes for large-scale gene cloning. To overcome these limitations, we developed new ligationindependent cloning (LIC) vectors derived from binary vectors including tobacco mosaic virus (pJL-TRBO), potato virus X (pGR106) and the pBI121 vector-based pMBP1. LIC vectors were modified to enable directional cloning of PCR products without restriction enzyme digestion or ligation reactions. In addition, the ccdB gene, which encodes a potent cell-killing protein, was introduced between the two LIC adapter sites in the pJL-LIC, pGR-LIC, and pMBP-LIC vectors for the efficient selection of recombinant clones. This new vector does not require restriction enzymes, alkaline phosphatase, or DNA ligase for cloning. To clone, the three LIC vectors are digested with SnaBI and treated with T4 DNA polymerase, which includes 3′ to 5′ exonuclease activity in the presence of only one dNTP (dGTP for the inserts and dCTP for the vector). To make recombinants, the vector plasmid and the insert PCR fragment were annealed at room temperature for 20 min prior to transformation into the host. Bacterial transformation was accomplished with 100% efficiency. To validate the new LIC vector systems, we were used to coexpressed the Phytophthora AVR and potato resistance (R) genes in N. benthamiana by infiltration of Agrobacterium. Coexpressed AVR and R genes in N. benthamiana induced the typical hypersensitive cell death resulting from in vivo interaction of the two proteins. These LIC vectors could be efficiently used for high-throughput cloning and laboratory-scale in planta expression. These vectors could provide a powerful tool for high-throughput transient expression assays for functional genomic studies in plants.  相似文献   

3.
Immobilized metal ion affinity chromatography (IMAC) has become one of the most popular protein purification methods for recombinant proteins with a hexa-histidine tag (His-tag) placed at the C- or N-terminus of proteins. Nevertheless, there are always difficult proteins that show weak binding to the metal chelating resin and thus low purity. These difficulties are often overcome by increasing the His-tag to 8 or 10 histidines. Despite their success, there are only few expression vectors available to easily clone and test different His-tag lengths. Therefore, we have modified Escherichia coli T7 expression vector pET21a to accommodate ligation-independent cloning (LIC) that will allow easy and efficient parallel cloning of target genes with different His-tag lengths using a single insert. Unlike most LIC vectors available commercially, our vectors will not translate unwanted extra sequences by engineering the N-terminal linker to anneal before the open reading frame, and the C-terminal linker to anneal as a His-tag.  相似文献   

4.
Screening phage-displayed combinatorial libraries represents an attractive method for identifying affinity reagents to target proteins. Two critical components of a successful selection experiment are having a pure target protein and its immobilization in a native conformation. To achieve both of these requirements in a single step, we have devised cytoplasmic expression vectors for expression of proteins that are tagged at the amino- or carboxy-terminus (pMCSG16 and 15) via the AviTag, which is biotinylated in vivo with concurrent expression of the BirA biotin ligase. To facilitate implementation in high-throughput applications, the engineered vectors, pMCSG15 and pMCSG16, also contain a ligase-independent cloning site (LIC), which permits up to 100% cloning efficiency. The expressed protein can be purified from bacterial cell lysates with immobilized metal affinity chromatography or streptavidin-coated magnetic beads, and the beads used directly to select phage from combinatorial libraries. From selections using the N-terminally biotinylated version of one target protein, a peptide ligand (Kd= 9 microM) was recovered that bound in a format-dependent manner. To demonstrate the utility of pMCSG16, a set of 192 open reading frames were cloned, and protein was expressed and immobilized for use in high-throughput selections of phage-display libraries.  相似文献   

5.

Background  

In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol.  相似文献   

6.
To establish high-throughput methods for protein crystallography, all aspects of the production and analysis of protein crystals must be accelerated. Automated, plate-based methods for cloning, expression, and evaluation of target proteins will help researchers investigate the vast numbers of proteins now available from sequenced genomes. Ligation-independent cloning (LIC) is well suited to robotic cloning and expression, but few LIC vectors are available commercially. We have developed a new LIC vector, pMCSG7, that incorporates the tobacco etch virus (TEV) protease cleavage site into the leader sequence. This protease is highly specific and functions under a wide range of conditions. The new vector incorporates an N-terminal his-tag followed by the TEV protease recognition site and a SspI restriction site used for LIC. The vector functioned as expected, giving high cloning efficiencies and strong expression of proteins. Purification and cleavage of a target protein showed that the his-tag and the TEV cleavage site function properly. The protein was purified and cleaved under different conditions to simulate both plate-based screening methods and large-scale purifications for crystal production. The vector also includes a pair of adjacent, unique restriction sites that will allow insertion of additional modules between the his-tag and the cleavage site of the leader sequence to generate a family of vectors suitable for high-throughput production of proteins.  相似文献   

7.
6×His tag is one of the most widely used affinity fusion tags that facilitates detection and purification of recombinant proteins. However, the location of this tag within a particular type of protein may influence the expression, solubility, and bioactivity of the protein, and the optimal location needs to be determined experimentally. To provide a tool for rapid generation of 6× His tags at the N- or C-terminus of any recombinant protein, we have constructed a pair of Escherichia coli expression vectors—pLIC-NHis and pLIC-CHis—based on the pET30a vector, for ligation-independent cloning (LIC). Construction of this new pair of LIC vectors was accomplished by replacement of the multiple cloning site of pET30a with two specifically designed LIC cloning sites. A target gene derived by PCR with a pair of predesigned primers can be inserted into the LIC site of pLIC-NHis for expression of recombinant proteins fused with the N-terminal sequence MHHHHHHG or into that of pLIC-CHis for expression of recombinant proteins with the C-terminal sequence THHHHHH. Successful expression of two normal mammalian prion proteins and five bacterial proteins in E. coli using this pair of LIC vectors reveals that these vectors are valuable tools for the production of recombinant His-tagged proteins in E. coli.  相似文献   

8.
A fundamental challenge in high-throughput (HT) expression screening is to rapidly identify the appropriate expression system for many targets in parallel. Known or unknown open reading frames (ORFs) are typically amplified by PCR and then cloned into a variety of vectors, producing recombinants used to direct target protein expression in Escherichia coli, insect cells, mammalian cells, or yeast. To facilitate rapid expression and purification in Spodoptera insect cells (Sf9), we developed transient expression vectors that include an enterokinase cleavage site immediately upstream of a ligation-independent cloning site (Ek/LIC). We also developed a high-efficiency insect cell transfection reagent, and automation-compatible fusion protein purification system for insect cells to facilitate expression screening and protein production. Positive clones identified from the small-scale screening were subjected to a larger scale production. Using this InsectDirectTM approach, we successfully expressed milligram quantities of different human proteins including heat shock proteins, phospholipases, and protein kinases.  相似文献   

9.
10.
11.
A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique – USER cloning – to rapidly construct mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors.  相似文献   

12.
Targeted mutagenesis is one of the major tools for determining the function of a given gene and its involvement in bacterial pathogenesis. In mycobacteria, gene deletion is often accomplished by using allelic exchange techniques that commonly utilise a suicide delivery vector. We have adapted a widely-used suicide delivery vector (p1NIL) for cloning two flanking regions of a gene using ligation independent cloning (LIC). The pNILRB plasmid series produced allow a faster, more efficient and less laborious cloning procedure. In this paper we describe the making of pNILRB5, a modified version of p1NIL that contains two pairs of LIC sites flanking either a sacB or a lacZ gene. We demonstrate the success of this technique by generating 3 mycobacterial mutant strains. These vectors will contribute to more high-throughput methods of mutagenesis.  相似文献   

13.
The creation of a double His-tag fusion that forms a RNA stem loop in the mRNA encoding the N-terminus of the target protein is a novel approach for the enhancement of expression, purification, and detection of a recombinant protein. Compared to a single His-tag fusion, a tandem His-tag fusion RNA stem loop, located downstream of the constitutive groE and Ch promoters, enhanced heterologous gene expression in Brucella, Salmonella, and Escherichia. We demonstrated one-step detection and purification of recombinant green fluorescence protein (GFP) directly from Brucella spp. without using Escherichia coli as an expression host. The amount of purified GFP using the tandem His-tag RNA stem loop increased more than threefold; moreover, the sensitivity of detection increased more than fourfold in comparison to the single His-tag fusion form. This method has the potential to significantly improve heterologous gene expression and high-throughput protein synthesis and purification.  相似文献   

14.
Yeast two-hybrid analysis is a valuable approach to the discovery and characterization of protein interactions. We have developed vectors that can indicate the presence of an insert when used in two-hybrid bait and prey construction by gap repair cloning. The strategy uses a recombination cloning site flanked by sequences encoding the GAL4 activation and binding domains. After gap repair cloning in standard hosts carrying an ADE2 reporter gene, disruption of GAL4 by an insert can be identified by the development of red colony color, while empty vector plasmids produce white colonies. Function in yeast two-hybrid applications was initially validated using known interacting proteins in pair-wise analyses, and subsequently, the bait vectors were used in library screens with the mouse Mad212 and human Mccd1 proteins, identifying a number of putative new interactions for these proteins. These vectors should facilitate high-throughput yeast two-hybrid screens in which large numbers of bait and prey constructs may be required.  相似文献   

15.
Function studies of many proteins are waited to develop after genome sequencing. High‐throughout technology of gene cloning will strongly promote proteins' function studies. Here we describe a ligation‐independent cloning (LIC) method, which is based on the amplification of target gene and linear vector by PCR using phosphorothioate‐modified primers and the digestion of PCR products by λ exonuclease. The phosphorothioate inhibits the digestion and results in the generation of 3′ overhangs, which are designed to form complementary double‐stranded DNA between target gene and linear vector. We compared our phosphorothioate primer cloning methods with several LIC methods, including dU primer cloning, hybridization cloning, T4 DNA polymerase cloning, and in vivo recombination cloning. The cloning efficiency of these LIC methods are as follows: phosphorothioate primer cloning > dU primer cloning > hybridization cloning > T4 DNA polymerase cloning >> in vivo recombination cloning. Our result shows that the 3′ overhangs is a better cohesive end for LIC than 5′ overhang and the existence of 5′phosphate promotes DNA repair in Escherichia coli, resulting in the improvement of cloning efficiency of LIC. We succeeded in constructing 156 expression plasmids of Aeropyrum pernix genes within a week using our method.  相似文献   

16.
With demand increasing for the production of many different proteins for biophysical or biochemical analyses, rapid methods are needed for the cloning, expression and purification of native recombinant proteins. In particular, generic methods are required that are independent of the target gene sequence. To address this challenge we have constructed four Escherichia coli expression vectors that can be used for ligation independent cloning (LIC) of an amplified target gene sequence. These vectors represent the combinatorial pairing of two different parent vector backbones with two different affinity tags. The target gene is cloned downstream of the sequence coding for an affinity-tagged small ubiquitin related modifier (SUMO). Using enhanced green fluorescent protein (eGFP) as an example we demonstrate that the LIC procedure works with high efficiency for all four of the vectors. We also show that the resultant recombinant SUMO fusion proteins can be overexpressed in E. coli and readily isolated by standard affinity purification techniques. Importantly, the purified fusion product can be treated with recombinant SUMO hydrolase to yield a mature target protein with any residue except proline at the amino terminus. We demonstrate an application of this by generating recombinant eGFP containing a non-native amino terminal cysteine residue and using it as a substrate for expressed protein ligation (EPL). The reagents and techniques described here represent a generic method for the rapid cloning and production of a target protein, and would be appropriate for a high throughput genomic scale expression project.  相似文献   

17.
Membrane proteins account for about 30% of the genomes sequenced to date and play important roles in a variety of cellular functions. However, determining the three-dimensional structures of membrane proteins continues to pose a major challenge for structural biologists due to difficulties in recombinant expression and purification. We describe here a high throughput pipeline for Escherichia coli based membrane protein expression and purification. A ligation-independent cloning (LIC)-based vector encoding a C-terminal green fluorescence protein (GFP) tag was used for cloning in a high throughput mode. The GFP tag facilitated expression screening in E. coli through both cell culture fluorescence measurements and in-gel fluorescence imaging. Positive candidates from the GFP screening were subsequently sub-cloned into a LIC-based, GFP free vector for further expression and purification. The expressed, C-terminal His-tagged membrane proteins were purified via membrane enrichment and Ni-affinity chromatography. Thermofluor technique was applied to screen optimal buffers and detergents for the purified membrane proteins. This pipeline has been successfully tested for membrane proteins from E. coli and can be potentially expanded to other prokaryotes.  相似文献   

18.
Seleem MN  Ali M  Boyle SM  Sriranganathan N 《Gene》2008,421(1-2):95-98
Improved expression vectors have been tested for protein expression studies in Salmonella spp. They are derived from the broad host range expression vector pNSGroE [Seleem, M.N., Vemulapalli, R., Boyle, S.M., Schurig, G.G. and Sriranganathan, N., 2004. Improved expression vector for Brucella species. Biotechniques 37, 740-744] and have several advantages (i) small in size (less than 3 kb); (ii) possess eleven unique restriction site to facilitate directional cloning; (iii) express proteins as His-tagged fusions for easy detection and purification; (iv) carry different promoters for various level of expression and (v) carry an UP element and RNA stem-loop for enhanced gene expression. We have demonstrated the ability of the new vectors to stably express heterologous proteins in Salmonella. We also demonstrated the utility of our vectors by detecting expression and purification of recombinant GFP. Our results suggest that these new vectors should improve gene expression in Salmonella, particularly those aimed at foreign antigen delivery.  相似文献   

19.
Structural biology places a high demand on proteins both in terms of quality and quantity. Although many protein expression and purification systems have been developed, an efficient and simple system which can be easily adapted is desirable. Here, we report a new system which combines improved expression, solubility screening and purification efficiency. The system is based on two newly constructed vectors, pEHISTEV and pEHISGFPTEV derived from a pET vector. Both vectors generate a construct with an amino-terminal hexahistidine tag (His-tag). In addition, pEHISGFPTEV expresses a protein with an N-terminal His-tagged green fluorescent protein (GFP) fusion to allow rapid quantitation of soluble protein. Both vectors have a tobacco etch virus (TEV) protease cleavage site that allows for production of protein with only two additional N-terminal residues and have the same multiple cloning site which enables parallel cloning. Protein purification is a simple two-stage nickel affinity chromatography based on the His tag removal. A total of seven genes were tested using this system. Expression was optimised using pEHISGFPTEV constructs by monitoring the GFP fluorescence and the soluble target proteins were quantified using spectrophotometric analysis. All the tested proteins were purified with sufficient quantity and quality to attempt structure determination. This system has been proven to be simple and effective for structural biology. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable.  相似文献   

20.
An immediate challenge in the post-genomic era is to assign a biological functions to proteins unraveled by genome analysis. This report is based on studies conducted using Schizosaccharomyces pombe, a simple model organism, and presents various vector systems as tools for high-throughput functional analysis of human genes. We constructed S. pombe expression vectors for efficient cloning of genes via the Gateway system. We modified the pREP and pSLF series vectors, which are widely used for gene expression in S. pombe. The vectors constructed have a uniform backbone of S. pombe autonomously replicating sequence (ARS) elements with different selective markers, namely, urw4 + and Saccharomyces cerevisiae LEU2 complementing leul. These vectors contain 3 different strengths of the inducible promoter nmtl, which affect the expression levels of the cloned open reading frames (ORFs). Further, target proteins can be fused with an N-terminal or C-terminal tag such as triple hemagglutinin (3× HA), enhanced green fluorescent protein (EGFP), or Discosoma red fluorescent protein (DsRed). We tested the feasibility of the constructed vectors by using 3 human genes, namely, RAB18, SCC-112, and PTEN. Proper expression of tagged RAB18 was confirmed by western blot analysis. Further, localization of RAB18, SCC112, and PTEN was demonstrated. The constructed vectors can be utilized for high-throughput functional analysis of heterologous genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号