首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To show medical application of antimicrobial peptides such as Pep5 and epidermin in inhibiting adhesion of Corynebacterium spp. to silicone catheters. METHODS AND RESULTS: The inhibitory activity of crude preparations of Pep5 and epidermin was tested on Corynebacterium spp. isolated from catheter-related infections. The addition of these substances at 640 AU ml(-1) to a cell suspension of Corynebacterium sp. 633544 resulted in a decrease of 3 log cycles in the number of viable cells over a period of 12 h. When Pep5 and epidermin were added to in vitro catheter colonization experiments, there was a decrease of 1 log unit (P < 0.01) in the cell number of Corynebacterium spp. adhered to silicone catheters. Scanning electron microscopy revealed that antimicrobial-treated catheters presented zones with absence of adhered cells, and some parts of the catheter presented aggregates suggesting damaged cells. CONCLUSIONS: The crude preparations of Pep5 and epidermin were able to inhibit Corynebacterium sp. 633544 isolated from catheter-related infection. The capability of Pep5 and epidermin to inhibit catheter colonization may indicate their usefulness as a barrier to block or to reduce the bacteremia by Corynebacterium spp. SIGNIFICANCE AND IMPACT OF THE STUDY: Peptide-like antimicrobial substances used to reduce bacterial attachment to medical devices may represent a novel strategy to control catheter-related infections.  相似文献   

2.
AIMS: To investigate the activity of seven staphylococcins, bacteriocins produced by staphylococci, against multiresistant Staphylococcus aureus and coagulase-negative staphylococci (CNS) involved in human infections. METHODS AND RESULTS: Four bacteriocins produced by Staph. epidermidis (Pep5, epidermin, epilancin K7 and epicidin 280) and three produced by Staph. aureus (aureocins A70, A53 and 215FN) were tested. Sixteen Staph. aureus strains, including a representative strain of the endemic Brazilian methicillin-resistant clone (MRSA), and 57 CNS strains were used as indicators. Among the staphylococcins used, Pep5 was able to inhibit 77.2% of the CNS strains and 87.5% of the Staph. aureus strains tested, including the Brazilian MRSA endemic clone, responsible for a large number of hospital-acquired infections in Brazil. On the other hand, aureocin A53 and epidermin presented a high antagonistic activity only against the Staph. aureus strains, being able to inhibit, respectively, 87.5% and 81.3% of them, including also the Brazilian MRSA endemic clone. The remaining bacteriocins inhibited only a low percentage of the nosocomial staphylococcal strains tested. CONCLUSIONS: Aureocin A53 and epidermin have potential applications against MRSA, whereas Pep5 seems to be an attractive agent against both MRSA and CNS, including mupirocin-resistant strains and the Brazilian endemic clone of MRSA, which is also found disseminated in other countries. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriocins may represent alternative agents to control important nosocomial pathogens.  相似文献   

3.
Immunity to lantibiotics   总被引:13,自引:0,他引:13  
Bacteria producing bacteriocins have to be protected from being killed by themselves. This mechanism of self-protection or immunity is especially important if the bacteriocin does not need a specific receptor for its action, as is the case for the type A lantibiotics forming pores in the cytoplasmic membrane. At least two different systems of immunity have evolved in this group of bacteriocins containing modified amino acids as a result of posttranslational modification. The immunity mechanism of Pep5 in Staphylococcus epidermidis is based on inhibition of pore formation by a small 69-amino acid protein weakly associated with the outer surface of the cytoplasmic membrane. In Lactococcus lactis and Bacillus subtilis the putative immunity lipoproteins NisI and SpaI, respectively, are also located at the outer surface of the cytoplasmic membrane, suggesting that a similar mechanism might be utilized by the producers of nisin and subtilin. In addition an ABC-transport system consisting of two membrane proteins, (NisEG, SpaG and the hydrophobic domain of SpaF, and EpiEG) and a cytoplasmic protein (NisF, the cytoplasmic domain of SpaF, and EpiF) play a role in immunity of nisin, subtilin and epidermin by import, export or inhibition of pore formation by the membrane components of the transport systems. Almost nothing is known of the immunity determinants of newly described and other type of lantibiotics.  相似文献   

4.
In search of new antimicrobials with anti-biofilm potential, in the present study activity of the frog-skin derived antimicrobial peptide temporin 1Tb (TB) against Staphylococcus epidermidis biofilms was investigated. A striking ability of TB to kill both forming and mature S. epidermidis biofilms was observed, especially when the peptide was combined with cysteine or EDTA, respectively. Kinetics studies demonstrated that the combination TB/EDTA was active against mature biofilms already after 2–4-h exposure. A double 4-h exposure of biofilms to TB/EDTA further increased the therapeutic potential of the same combination. Of note, TB/EDTA was able to eradicate S. epidermidis biofilms formed in vitro on silicone catheters. At eradicating concentrations, TB/EDTA did not cause hemolysis of human erythrocytes. The results shed light on the anti-biofilm properties of TB and suggest a possible application of the peptide in the lock therapy of catheters infected with S. epidermidis.  相似文献   

5.
6.
Summary The production of the lanthionine-containing polypeptide antibiotics gallidermin from Staphylococcus gallinarum TÜ 3928 and pep 5 from S. epidermidis 5 is investigated with respect to regulation and stimulation of productivity by media components, optimization of both the media used and the fermentation process and is compared to the production of the lantibiotic epidermin from S. epidermidis TÜ 3298. Efficient methods for rapid quantification of lantibiotics, optimization of the media and a primary enrichment by adsorption chromatography are reported.Offprint requests to: H.-P. Fiedler  相似文献   

7.
This in vitro study evaluated the antibacterial effect of copper additives in silicone implants. Specimens of a standard silicone material used in breast augmentation and modified copper-loaded silicone specimens were prepared and incubated in a Staphylococcus epidermidis suspension (2 h, 37°C). After the quantification of adhering staphylococci using a biofluorescence assay (Resazurin), the viability of the adhering bacterial cells was quantified by live or dead cell labeling in combination with fluorescence microscopy. In the Resazurin fluorometric quantification, a higher amount of adhering S. epidermidis cells was detected on pure silicone (4612 [2319/7540] relative fluorescence units [rfu]) than on silicone with copper additives (2701 [2158/4153] rfu). Additionally, a significantly higher amount of adhering bacterial cells (5.07% [2.03%/8.93%]) was found for pure silicone than for silicone with copper additives (1.72% [1.26%/2.32%]); (p < 0.001). Calculations from live or dead staining showed that the percentage of dead S. epidermidis cells adhered on pure silicone (52.1%) was significantly lower than on silicone with copper additives (79.7%); (p < 0.001). In vitro, silicone material with copper additives showed antibacterial effects against S. epidermidis. Copper-loaded silicone may prevent bacterial colonization, resulting in lower infection rates of silicone implants.  相似文献   

8.
During a prospective study of indwelling vascular catheter-related infections, 134 isolates ofStaphylococcus epidermidis were grown from 700 catheter tips.In vitro antimicrobial susceptibility testing of these isolates to oxacillin, vancomycin and ofloxacin was performed using the standard broth microdilution technique. These results were compared to those for the same organisms grown in biofilm before the addition of antimicrobial agents. In 96-well flat bottom microtiter plates, 104–105 colony forming units ofS. epidermidis in 0.1 ml broth were grown for 18 h at 37°C, at which time a biofilm was observed for all isolates. Different concentrations of antimicrobial agents (0.1 ml) were then added to the plates. The plates were incubated for 18 h at 37°C. Since MICs could not be estimated in these plates, all the wells were subcultured after mixing the biofilm with the broth. Minimum bactericidal concentrations (MBCs) were defined as 99.9% reduction in colony forming units. For organisms grown in suspension, 100% of the isolates were susceptible to vancomycin, 81% to ofloxacin and 40% to oxacillin. MBCs of susceptible isolates were within four-fold differences for vancomycin (53%), oxacillin (50%), and ofloxacin (51%). When grown as a biofilm, 78%, 93% and 71% of isolates had MBCs of 2048 g ml–1 of oxacillin, vancomycin and ofloxacin respectively. These data demonstrate the reduced bactericidal activity of antimicrobial agents againstS. epidermidis in a biofilm and a simple method for its detection in the microbiology laboratory.  相似文献   

9.
Lantibiotics are antibiotic peptides that contain the rare thioether amino acids lanthionine and/or methyllanthionine. Epidermin, Pep5 and epilancin K7 are produced by Staphylococcus epidermidis whereas gallidermin (6L-epidermin) was isolated from the closely related species Staphylococcus gallinarum. The biosynthesis of all four lantibiotics proceeds from structural genes which code for prepeptides that are enzymatically modified to give the mature peptides. The genes involved in biosynthesis, processing, export etc. are found in gene clusters adjacent to the structural genes and code for transporters, immunity functions, regulatory proteins and the modification enzymes LanB, LanC and LanD, which catalyze the biosynthesis of the rare amino acids. LanB and LanC are responsible for the dehydration of the serine and threonine residues to give dehydroalanine and dehydrobutyrine and subsequent addition of cysteine SH-groups to the dehydro amino acids which results in the thioether rings. EpiD, the only LanD enzyme known so far, catalyzes the oxidative decarboxylation of the C-terminal cysteine of epidermin which gives the C-terminal S-aminovinylcysteine after addition of a dehydroalanine residue.Abbreviations Dha 2,3-didehydroalanine - Dhb 2,3-didehydrobutyrine - Lan lanthionine - Melan methyllanthionine  相似文献   

10.
11.
苦参碱对表皮葡萄球菌生物被膜作用初探   总被引:2,自引:0,他引:2  
通过中药有效成分苦参碱对表皮葡萄球菌生物被膜抑制作用的研究,为表皮葡萄球菌生物被膜引起的相关感染提供新的治疗途径。利用XTT减低法评价苦参碱对表皮葡萄球菌初始粘附及生物被膜内细菌代谢的影响,镜下观察该药对表皮葡萄球菌生物被膜的形态学影响。结果表明:苦参碱对表皮葡萄球菌生物被膜菌的SMIC50和SMIC80分别为62.5 mg/L和500 mg/L;1 000 mg/L浓度的苦参碱对表皮葡萄球菌早期粘附有抑制作用;250 mg/L浓度的苦参碱对表皮葡萄球菌生物被膜的形态有显著影响。因此可见,苦参碱对表皮葡萄球菌生物被膜的形成与粘附均有抑制作用。  相似文献   

12.
Strains of Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Enterococcus faecalis, and Klebsiella pneumoniae, mostly from complicated urinary tract infections, showed reduced adherence to silver-treated silicone or latex catheters as compared with latex or silicone catheters. The relative degrees of cell adherence to catheters at 2 h or 18 h, as indicated by radiolabeled cell assays, were in general agreement with growth rate-reduction assays and scanning-electron-microscopy data. For strains of E. coli, the correlation between cell hydrophobicity and degree of adherence to catheters was not significant. Antibiotic resistance (tetracycline, sulfathiazine, neomycin, kanamycin) and silver resistance were not associated. The radiolabel adherence procedure provided a quantitative method for evaluating the relative antimicrobial efficacy of silver-treated catheters.  相似文献   

13.
Owing to their massive use, Staphylococcus epidermidis has recently developed significant resistance to several antibiotics, and became one of the leading causes of hospital-acquired infections. Current antibiotics are typically ineffective in the eradication of bacteria in biofilm-associated persistent infections. Accordingly, the paucity of effective treatment against cells in this mode of growth is a key factor that potentiates the need for new agents active in the prevention or eradication of biofilms. Daptomycin and linezolid belong to the novel antibiotic therapies that are active against gram-positive cocci. On the other hand, rifampicin has been shown to be one of the most potent, prevalent antibiotics against S. epidermidis biofilms. Therefore, the main aim of this study was to study the susceptibility of S. epidermidis biofilm cells to the two newer antimicrobial agents previously mentioned, and compare the results obtained with the antimicrobial effect of rifampicin, widely used in the prevention/treatment of indwelling medical device infections. To this end the in vitro activities of daptomycin, linezolid, and rifampicin on S. epidermidis biofilms were accessed, using these antibiotics at MIC and peak serum concentrations. The results demonstrated that at MIC concentration, rifampicin was the most effective antibiotic tested. At peak serum concentration, both strains demonstrated similar susceptibility to rifampicin and daptomycin, with colony-forming units (CFUs) reductions of approximately 3–4 log10, with a slightly lower response to linezolid, which was also more strain dependent. However, considering all the parameters studied, daptomycin was considered the most effective antibiotic tested, demonstrating an excellent in vitro activity against S. epidermidis biofilm cells. In conclusion, this antibiotic can be strongly considered as an acceptable therapeutic option for S. epidermidis biofilm-associated infections and can represent a potential alternative to rifampicin in serious infections where rifampicin resistance becomes prevalent.  相似文献   

14.
Staphylococcus epidermidis is the most frequent cause of nosocomial sepsis and catheter-related infections in which biofilm formation is considered to be one of the main virulence mechanisms. Moreover, their increased resistance to conventional antibiotic therapy enhances the need to develop new therapeutical agents. Farnesol, a natural sesquiterpenoid present in many essential oils, has been described as impairing bacterial growth. The aim of this study was to evaluate the effect of farnesol on the structure and composition of biofilm matrix of S. epidermidis. Biofilms formed in the presence of farnesol (300 μM) contained less biomass, and displayed notable changes in the composition of the biofilm matrix. Changes in the spacial structure were also verified by confocal scanning laser microscopy (CSLM). The results obtained by the quantification of extracellular polymers and by wheat germ agglutinin (WGA) fluorescent detection of glycoproteins containing β(1→4)-N-acetyl-d-glucosamine support the hypothesis that farnesol causes disruption of the cytoplasmic membrane and consequently release of cellular content.  相似文献   

15.
It is generally assumed that type A lantibiotics primarily kill bacteria by permeabilization of the cytoplasmic membrane. As previous studies had demonstrated that nisin interacts with the membrane-bound peptidoglycan precursors lipid I and lipid II, we presumed that this interaction could play a role in the pore formation process of lantibiotics. Using a thin-layer chromatography system, we found that only nisin and epidermin, but not Pep5, can form a complex with [14C]-lipid II. Lipid II was then purified from Micrococcus luteus and incorporated into carboxyfluorescein-loaded liposomes made of phosphatidylcholine and cholesterol (1:1). Liposomes supplemented with 0.05 or 0.1 mol% of lipid II did not release any marker when treated with Pep5 or epilancin K7 (peptide concentrations of up to 5 mol% were tested). In contrast, as little as 0.01 mol% of epidermin and 0.1 mol% of nisin were sufficient to induce rapid marker release; phosphatidylglycerol-containing liposomes were even more susceptible. Controls with moenomycin-, undecaprenol- or dodecaprenolphosphate-doped liposomes demonstrated the specificity of the lantibiotics for lipid II. These results were correlated with intact cells in an in vivo model. M. luteus and Staphylococcus simulans were depleted of lipid II by preincubation with the lipopeptide ramoplanin and then tested for pore formation. When applied in concentrations below the minimal inhibitory concentration (MIC) and up to 5–10 times the MIC, the pore formation by nisin and epidermin was blocked; at higher concentrations of the lantibiotics the protective effect of ramoplanin disappeared. These results demonstrate that, in vitro and in vivo , lipid II serves as a docking molecule for nisin and epidermin, but not for Pep5 and epilancin K7, and thereby facilitates the formation of pores in the cytoplasmic membrane.  相似文献   

16.
Nosocomial device-related infections with Gram-positive cocci and their resistance to vancomycin are of increasing occurrence. We examined clinical isolates of relatively avirulent coagulase-negative staphylococci for their resistance to vancomycin and for their capabilities to adhere in vitro to medical grade silicone. Vancomycin resistance was found in 9 of 20 isolates, but there was no correlation between adherence capacity to silicone in the absence of vancomycin and vancomycin resistance for a given strain. Vancomycin in the medium, adsorbed to the surface of medical grade silicone or adsorbed on nongrowing cells, reduced adherence of representative Staphylococcus epidermidis to medical grade silicone. Received: 27 November 2000 / Accepted: 10 January 2001  相似文献   

17.
The incidence of catheter associated urinary tract infections (CAUTIs) is increasing worldwide. This study was designed to modify a biomaterial by impregnating a silicone urinary catheter with combination of a macrolide, azithromycin (AZM) and a fluoroquinolone, ciprofloxacin (CIP). Drug release profiles showed slow yet continuous release of antibiotics from catheters for one month. In vitro efficacy testing showed that group B catheters [3% (w v?1) CIP + 6% (w v?1) AZM] outperformed group A catheters [2% (w v?1) CIP + 5% (w v?1) AZM] by (1) showing larger zones of inhibition (>31 mm) compared to group A (<28 mm) for up to 30 days against Pseudomonas aeruginosa PAO1; (2) killing adhered bacteria in 24 h compared to 24–48 h in group A; (3) showing longer antimicrobial durability for four weeks; and (4) exhibiting a stable real-time shelf life of one year, suggesting that these catheters can be explored in clinical settings, especially in long-term CAUTI.  相似文献   

18.
Genes encoding trimethoprim (TMP)-resistant and -susceptible dihydrofolate reductases (DHFR) in Staphylococcus epidermidis isolated in Saitama Prefecture were compared with the TMP-resistant DHFR gene of S. aureus, dfrA. The nucleotide sequences of TMPr and TMPS genes in five S. epidermidis isolates tested could be divided into three types: type 1, identical with the TMPr gene dfrA that had been found in S. aureus; type 3, identical with the TMPs gene dfrC in S. epidermidis; and type 2, having only two nucleotide substitutions to dfrC with no amino acid change. TMPr isolates carried either one of the type 2 or type 3 sequences in addition to the type 1 sequence. A Southern hybridization analysis revealed that, in TMPr S. epidermidis, the type 1 sequence was located on a 5.5 kb EcoRI-EcoRV restriction fragment together with the sequence for the gentamicin (GM)-resistant gene, while the type 2 or type 3 sequence was located on the 1.0 kb EcoRI-EcoRV fragment. No plasmid-carrying dfrA-homologous sequence was detected in the S. epidermidis isolates we tested. These results suggest that the TMPr and GMr genes are closely linked and located on the chromosome in S. epidermidis isolated in Japan.  相似文献   

19.
Summary Staphylococcus epidermidis TÜ 3298/DSM 3095 produces epidermin, a basic 21-residue peptide-amide antibiotic active against aerobic and anaerobic Gram-positive bacteria. Fermentations were performed by batch and feeding processes up to the 2001 scale. Highest yields were obtained when the first purification step was integrated into the fermentation process by on-line adsorption of the antibiotic. Isolation and purification by adsorption chromatography and ion exchange chromatography were performed batchwise.  相似文献   

20.
Staphylococcus epidermidis is considered to be one of the most common causes of nosocomial bloodstream infections, particularly in immune-compromised individuals. Here, we report the development and application of a novel peptide nucleic acid probe for the specific detection of S. epidermidis by fluorescence in situ hybridization. The theoretical estimates of probe matching specificity and sensitivity were 89 and 87%, respectively. More importantly, the probe was shown not to hybridize with closely related species such as Staphylococcus aureus. The method was subsequently successfully adapted for the detection of S. epidermidis in mixed-species blood cultures both by microscopy and flow cytometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号