首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
90% of the first (hallucal) tarsometatarsal joints are screw-shaped; the axis is directed upwards to the front touching the lateral edge of the joint. Thus the plantar flexion is inevitably accompanied by an adduction and a pronation, and vice versa a dorsiflexion is consequently accompanied by an abduction and a supination, when the articular surfaces exactly slide along each other. 10% of these joints, however, are ellipsoid-shaped; in this case the distal articular surface of the medial cuneiform bone has the form of an ovoid head, and a strong ligament situated next to the lateral edge of the joint effects the same kind of motion described above. The medial cuneonavicular joint is always ellipsoid-shaped, the head of which is made up by the medial facet of the distal articular surface of the navicular bone. Each of the two joints mentioned has a considerable range of mobility.  相似文献   

2.
Gorillas are more closely related to each other than to any other extant primate and are all terrestrial knuckle-walkers, but taxa differ along a gradient of dietary strategies and the frequency of arboreality in their behavioral repertoire. In this study, we test the hypothesis that medial cuneiform morphology falls on a morphocline in gorillas that tracks function related to hallucial abduction ability and relative frequency of arboreality. This morphocline predicts that western gorillas, being the most arboreal, should display a medial cuneiform anatomy that reflects the greatest hallucial abduction ability, followed by grauer gorillas, and then by mountain gorillas. Using a three-dimensional methodology to measure angles between articular surfaces, relative articular and nonarticular areas, and the curvatures of the hallucial articular surface, the functional predictions are partially confirmed in separating western gorillas from both eastern gorillas. Western gorillas are characterized by a more medially oriented, proportionately larger, and more mediolaterally curved hallucial facet than are eastern gorillas. These characteristics follow the predictions for a more prehensile hallux in western gorillas relative to a more stable, plantigrade hallux in eastern gorillas. The characteristics that distinguish eastern gorilla taxa from one another appear unrelated to hallucial abduction ability or frequency of arboreality. In total, this reexamination of medial cuneiform morphology suggests differentiation between eastern and western gorillas due to a longstanding ecological divergence and more recent and possibly non-adaptive differences between eastern taxa.  相似文献   

3.
Hallucal tarsometatarsal joint in Australopithecus afarensis   总被引:3,自引:0,他引:3  
Hallucal tarsometatarsal joints from African pongids, modern humans, and Australopithecus afarensis are compared to investigate the anatomical and mechanical changes that accompanied the transition to terrestrial bipedality. Features analyzed include the articular orientation of the medial cuneiform, curvature of the distal articular surface of the medial cuneiform, and the articular configuration of the hallucal metatarsal proximal joint surface. Morphological characteristics of the hallucal tarsometatarsal joint unequivocally segregate quadrupedal pongids and bipedal hominids.  相似文献   

4.
This study investigated whether points digitized for the purpose of embedding coordinate systems into the foot accurately represented the orientation of the bone described. Eight complete data sets were collected from 9 adult cadaver specimens. Palpable landmarks defined 5 segments to include the calcaneus, navicular, medial cuneiform, first metatarsal, and hallux. With use of the Flock of Birds electromagnetic motion tracking device, a single examiner digitized a minimum of 3 points for each segment. Coordinate definitions followed the right-hand rule, with left-sided data converted to right-sided equivalency. Local axes were created where X projected approximately forward, Y upward, and Z laterally. Matrix transformation computations calculated the angular precision in degrees between coordinates built from points digitized pre- and post-dissection of surface tissues covering bone. The condition of post-dissection was considered the criterion standard for comparison. Change about the X-axis represented the angular precision of the coordinate in the frontal anatomical plane; Y-axis in the transverse plane; Z-axis in the sagittal plane. The calcaneus and navicular coordinate axes changed by an average of <3° across conditions. Mean coordinate angulation of the cuneiform X, Y, Z axes changed by 6.0°, 4.6°, 11.9°, respectively. Change in coordinate angulation was largest for the X-axis at the first metatarsal (48.6°) and hallux (36.5°). A two-way repeated measures ANOVA found a significant interaction between the axis and segment (F=8.87, P=0.00). Tukey post-hoc comparisons indicated the change in coordinate angulation at the X-axis for the cuneiform, metatarsal, and hallux to be significantly different (P <0.05) from the calcaneus and navicular. The X-axis of the first metatarsal and hallux was different from all other axis-segment combinations except for the Z-axis of the cuneiform. Differences in locating landmarks reduced angular precision of the coordinate axes most in the smallest foot segments where points digitized were located close together. We can recommend the proposed landmarks for the calcaneus and navicular segments, but kinematics determined about the coordinate axes for the small sized medial cuneiform, and the long (X) axis for the first metatarsal and hallux have excessive error.  相似文献   

5.
The grasping primate foot is one of the hallmark adaptations for the order Primates. Prosimian muscle and joint analysis indicates that there are two distinct primate grasping feet. The I–V opposable grasp, in which the hallux opposes the other four digits around a support, is the primitive grasp type utilized by cheirogaleids, lorisides, Daubentonia, and tarsiids. Lemurids and indriids, on the other hand, have a derived I–II adductor grasp, where the grasping action of the hallux and the second digit have been enhanced. This grasp seems to be in response to increasing body size and the use of vertical supports. North American adapids, which were large and possessed the I–V opposable grasp, were probably not able to utilize vertical supports frequently. The recognition of this innovative adaptation, the I–II adductor grasp, which is unique to Madagascar, extends our appreciation of prosimian locomotor capabilities.  相似文献   

6.
The prehallux is a sesamoid bone occurring in the region of the hallucial tarso-metatarsal joint in a number of metatherian and eutherian orders and in some nonmammalian tetrapods. Within the order Primates, it occurs invariably in ceboids and Hylobates, with extreme infrequency in pongids and Homo, and is absent in other primates groups. It has been suggested that, first, the prehallux is homologous both within and across the infraclasses Metatheria and Eutheria; second, it has functional significance in that it contributes to joint stability and is an adaptation to arboreality; third, its presence results in diagnostic features on the entocuneiform and hallucial metatarsal, so that original presence or absence can be unambiguously assessed in instances when the bone itself is not preserved; and fourth, because of presumed homology, it may be employed in the reconstruction of phylogenetic relationships. The present study concludes that the homologous nature of the bone is open to reasonable doubt, the assumption of homology does not yield significantly more parsimonious phylogeny reconstructions than does the assumption of analogy, there are no invariant diagnostic features associated with its presence, and functional explanations currently offered are of questionable validity. Thus, the prehallux is at present of little utility in either establishing or precluding phylogenetic relationships among primates.  相似文献   

7.
G. Berillon 《Human Evolution》2003,18(3-4):113-122
Early hominid feet are often very fragmentary preserved and their architectural approaches stayed limited and subject to controversy. This study proposes an architectural analysis of the primate foot realised on dislocated skeleton. It is based on the angular analysis of geometrical relationships between the joint areas. We investigate the longitudinal structure of the primate foot and we present the results concerning someAustralopithecus afarensis specimens from Hadar (Ethiopia) and theHomo habilis Olduvai Hominid 8 foot (Tanzania). The architectural analysis argues for the lack of a longitudinal medial arch inA. afarensis, their joints being in neutral position. On the contrary, the more recent OH8 specimen is arched both medially and laterally.  相似文献   

8.
Seventy six metrical traits measured on the femur and tibia of three higher primate groups —Ceboidea, Cercopithecoidea, Hominoidea have been processed by various univariate and multivariate statistical methods to survey the process of evolution of the morphology of the femur and tibia in higher primates. Intragroup and intergroup variability, similarity and differences as well as various aspects of scaling and sexual dimorphism have been analyzed to study adaptive trends and phylogenetic diversity in higher primates, in individual superfamilies and to explore the adaptive morphological pattern of early hominids and basic differences between hominids and pongids. Two basic morphotypes of the femur and tibia in higher primates have been determined. They are (1) advanced hominoid morphotype (hominids and pongids) and (2) ancestral higher primate morphotype (platyrrhine and cattarrhine monkeys, early hominoids, and hylobatids). Cebid lower limb bones are adapted to arboreal quadrupedalism with antipronograde features while femur and tibia of cercopithecid monkeys are basically adapted to the semi-arboreal locomotion. Early hominoids (Proconsul) and hylobatids are morphologically different from pongids; some features are close toAteles or other monkey species. Pongids and hominids are taken as one major morphological group with different scaling and some functional and morphological similarities. Numerous analogous features were described on the lower limb skeleton ofPan andPongo showing analogous ecological parameters in their evolution. Major morphological and biomechanical trends are analyzed. It is argued that early advanced hominoid morphology is ancestral both to the pongids and to early hominids. The progressive morphological trend in early hominids has been found fromA. afarensis with ancestral hominid morphology, toH. habilis with an elongated femur and structural features similar to advanced hominids. A detailed phylogenetic analysis of higher primate femur and tibia is also presented.  相似文献   

9.
S.E. Burnett  D.T. Case 《HOMO》2011,62(2):109-125
Bipartition of the medial cuneiform is a malsegmentation defect of the foot characterized by separation of the normal cuneiform into dorsal and plantar segments. In many cases, these segments are held together by means of a cartilaginous or fibrocartilaginous bridge, resulting in a deep, lytic-like pit in dry bone reminiscent of those seen in cases of non-osseous tarsal coalition. Partial bipartition, where separation of the two segments is incomplete, may also occur. Though originally documented over 250 years ago, relatively little is known about the bipartite medial cuneiform. The purpose of this paper is to present thirteen new cases (ten complete, three partial) from Egypt, England, South Africa, Denmark, and the United States, and to analyze all known cases to investigate patterns in sex, laterality, frequency, and associated anomalies. Results suggest that bipartite medial cuneiforms are significantly more prevalent in males. Bipartite medial cuneiforms are also frequently bilateral, perhaps indicating a strong genetic component. Identification of this condition in multiple individuals from a cemetery could, therefore, suggest a familial relationship. Frequencies of this variant are consistently less than 1% in most large samples, and significant frequency differences among samples from around the world are rare. Several other minor congenital variations have been noted in individuals with bipartition of the medial cuneiform. However, additional systematic research is needed to elucidate further the prevalence of associated variants.  相似文献   

10.
Vertical climbing is widely accepted to have played an important role in the origins of both primate locomotion and of human bipedalism. Yet, only a few researchers have compared climbing mechanics in quadrupedal primates that vary in their degree of arboreality. It is assumed that primates using vertical climbing with a relatively high frequency will have morphological and behavioral specializations that facilitate efficient climbing mechanics. We test this assumption by examining whether time spent habitually engaged in climbing influences locomotor parameters such as footfall sequence, peak forces, and joint excursions during vertical climbing. Previous studies have shown that during climbing, the pronograde and semiterrestrial Macaca fuscata differs in these parameters compared to the more arboreal and highly specialized, antipronograde Ateles geoffroyi. Here, we examine whether a fully arboreal, quadrupedal primate that does not regularly arm-swing will exhibit gait and force distribution patterns intermediate between those of Macaca fuscata and Ateles geoffroyi. We collected footfall sequence, limb peak vertical forces, and 3D hindlimb excursion data for Macaca fascicularis during climbing on a stationary pole instrumented with a force transducer. Results show that footfall sequences are similar between macaque species, whereas peak force distributions and hindlimb excursions for Macaca fascicularis are intermediate between values reported for M. fuscata and Ateles geoffroyi. These results support the notion that time spent climbing is reflected in climbing mechanics, even though morphology may not provide for efficient mechanics, and highlight the important role of arboreal locomotor activity in determining the pathways of primate locomotor evolution.  相似文献   

11.
12.
13.
Phenotypic divergence is often unrelated to genotypic divergence. An extreme example is rapid phenotypic differentiation despite genetic similarity. Another extreme is morphological stasis despite substantial genetic divergence. These opposite patterns have been viewed as reflecting opposite properties of the lineages. In this study, phenotypic radiation accompanied by both rapid divergence and long‐term conservatism is documented in the inferred molecular phylogeny of the micro land snails Cavernacmella (Assimineidae) on the Ogasawara Islands. The populations of Cavernacmella on the Sekimon limestone outcrop of Hahajima Island showed marked divergence in shell morphology. Within this area, one lineage diversified into types with elongated turret shells, conical shells and flat disc‐like shells without substantial genetic differentiation. Additionally, a co‐occurring species with these types developed a much larger shell size. Moreover, a lineage adapted to live inside caves in this area. In contrast, populations in the other areas exhibited no morphological differences despite high genetic divergence among populations. Accordingly, the phenotypic evolution of Cavernacmella in Ogasawara is characterized by a pattern of long‐term stasis and periodic bursts of change. This pattern suggests that even lineages with phenotypic conservatism could shift to an alternative state allowing rapid phenotypic divergence.  相似文献   

14.
The central hypothesis of this paper is that basic properties of vertebrate limb development bias the generation of phenotypic variation in certain directions, and that these biases establish focal units, or regions, of evolutionary change within the primate hand and foot. These focal units include (1) a preaxial domain (digit I, hallux or pollex, metapodial and proximal phalanx), (2) a postaxial domain (metapodials and phalanges of digits II?CV), and (3) a digit tip domain (terminal phalanges and nails/claws of rays I?CV). The existence of these focal units therefore provides a mechanistic basis for mosaic evolution within the hand and foot, and can be applied to make specific predictions about which features of the limb skeleton are most likely to be altered in primate adaptive radiations over time. Examination of the early primate fossil record provides support for this model, and suggests that the existence of variational tendencies in limb development has played a major role in guiding the origin and evolution of primate skeletal form.  相似文献   

15.
Diseases such as degenerative or rheumatoid arthritis are accompanied by joint destruction. Clinically applied tissue engineering technologies like autologous chondrocyte implantation, matrix-assisted chondrocyte implantation, or in situ recruitment of bone marrow mesenchymal stem cells target the treatment of traumatic defects or of early osteoarthritis. Inflammatory conditions in the joint hamper the application of tissue engineering during chronic joint diseases. Here, most likely, cartilage formation is impaired and engineered neocartilage will be degraded. Based on the observations that mesenchymal stem cells (a) develop into joint tissues and (b) in vitro and in vivo show immunosuppressive and anti-inflammatory qualities indicating a transplant-protecting activity, these cells are prominent candidates for future tissue engineering approaches for the treatment of rheumatic diseases. Tissue engineering also provides highly organized three-dimensional in vitro culture models of human cells and their extracellular matrix for arthritis research.  相似文献   

16.
There is a richly documented fossil record of the evolutionary transition from ape-sized brains that are less that one-third the size of modern humans through a series of intermediate-sized brains up to the modern range. The first report on the discovery of the foot of the Stw 573 skeleton emphasized the apparent transitional nature of its great toe [Clarke, R.J., Tobias, P.V., 1995. Sterkfontein Member 2 foot bones of the oldest South African hominid. Science 269, pp. 521-524]. The hallux appeared to be intermediate in its divergence between human-like adduction and ape-like abduction. A major part of this evidence is the medial encroachment of the metatarsal I facet on the medial cuneiform. This study quantifies the variability of this feature in extant hominoids and fossil hominids. The results are consistent with the view that all currently known hominids were specialized for bipedality and lacked the ape-like ability to oppose the great toe.  相似文献   

17.
Development of the dentition is critically integrated into the life cycle in living mammals. Recent work on dental development has given rise to three separate lines of evidence on the evolution of human growth and aging; these three, based on several independent studies, are reviewed and integrated here. First, comparative study of living primate species demonstrates that measures of development (e.g., age of emergence of the first permanent molar) are highly correlated with the morphological attributes brain and body weight (as highly as r = 0.98, N = 21 species). These data predict that small-bodied, small-brained Australopithecus erupted M1 at 3–3.5 years and possessed a life span comparable to that of a chimpanzee. Second, chronological age at death for three australopithecines who died at or near emergence of M1 is now estimated as ~3.25 years based on incremental lines in teeth; this differs substantially from expectations based on human growth schedules (5.5–6 years). Third, developmental sequences (assessed by the coefficient of variation of human dental age) observed in gracile Australopithecus and great apes diverge from those of humans to a comparable degree; sequences become more like modern humans after the appearance of the genus Homo. These three lines of evidence agree that the unique rate and pattern of human life history did not exist at the australopithecine stage of human evolution. It is proposed that the life history of early Homo matched no living model precisely and that growth and aging evolved substantially in the Hominidae during the last 2 million years.  相似文献   

18.
Variations in penile morphology among galago species are pronounced and complex. Comparative studies of galagos and other primate species show that elongation of the baculum (os penis)is associated with copulatory patterns involving a prolonged period of intromission. The enlarged penile “spines” of male galagos may be important in maintaining a genital “lock” during copulation. In primate species where females mate with a number of partners, sexual selection may have favored the rapid evolution of such features of penile morphology and masculine copulatory behavior. It is suggested that evolution of complex penile morphologies in galagos has been influenced by sexual selection and that such morphological variations are extremely useful in taxonomic studies.  相似文献   

19.
Abstract. A phylogenetic analysis for Nordus is provided; the monophyly of the genus is established and the phylogenetic relationships of its thirty-eight species are resolved. Analysis of eighty-seven morphological characters, including two coloration characters, produced four equally most-parsimonious trees (tree length = 365, consistency index = 0.38, retention index = 0.66). The coloration of the head and thorax is examined in the context of the reconstructed phylogeny and the evolution of heterochromy is discussed. Golden-orange coloration of the head and thorax evolved in the ancestor of Nordus. Black coloration of the head evolved at least five times, and black coloration of the thorax at least six times within the genus. The evolution of secondary sexual structures in Nordus is also examined in the context of the phylogeny. In males, a medial emarginate abdominal sternum VIII is the ancestral condition. The presence of a single large median lobe on sternum VIII or the presence of two elongate median lobes with a medial emargination on sternum VIII each represent independent evolution of modifications to the male sternum VIII in different lineages. In females, an unmodified abdominal sternum VIII is the ancestral condition. Evolution of an emargination, small lobe or pointed lobe on the margin of sternum VIII in females occurred in different lineages.  相似文献   

20.
The shoulder joint of the Microchiroptera shows a remarkable morphological variation that has been studied in 20 individual bats from 15 species and 11 families. The basic morphology of the shoulder joint, with a globular humeral head and a corresponding glenoid cavity, is found in the Megachiroptera and, within the Microchiroptera, in the Rhinopomatidae. Besides this basic shoulder joint, there are two derived joint types: the derived and specialized shoulder joint with a single articular surface on the scapula and a more-or-less oblong humeral head, and the derived and specialized shoulder joint with secondary articular surfaces on the trochiter and on the dorsal aspect of the scapula. The first type of derived joint is most strikingly developed in the Mormoopidae and the Noctilionidae, the second one in the Vespertilionidae and the Molossidae. It is suggested that both types of derived shoulder joints have the functional significance of reducing the pronatory movements of the abducted forearm during the downstroke of the wing-beat cycle. This suggested function of the secondary shoulder joint is a new approach to understanding this very peculiar structure. In species with these specialized shoulder joints, the downstroke musculature is comparatively better developed and the M. serratus ant. post. div. comparatively less well developed. A hypothesis is offered to explain and combine the osteological and myological findings. Each of the derived types of shoulder joints has developed independently more than once through parallel evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号