首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Many adhesion and signaling molecules critical for development, as well as surface markers implicated in diseases ranging from cancer to influenza, contain oligosaccharides that modify their functions. Inside a cell, complex glycosylation pathways assemble these oligosaccharides and attach them to proteins and lipids as they traffic to the cell surface. Until recently, practical technologies to manipulate glycosylation have lagged unlike the molecular biologic and genetic methods available to intervene in nucleic acid and protein biochemistry; now, metabolic oligosaccharide engineering shows promise for manipulating glycosylation. In this methodology, exogenously-supplied non-natural sugars intercept biosynthetic pathways and exploit the remarkable ability of many of the enzymes involved in glycosylation to process metabolites with slightly altered chemical structures. To date, non-natural forms of sialic acid, GalNAc, GlcNAc, and fucose have been incorporated into glycoconjugates that appear on the cell surface; in addition O-GlcNAc protein modification involved in intracellular signaling has been tagged with modified forms of this sugar. Reactive functional groups, including ketones, azides, and thiols, have been incorporated into glycoconjugates and thereby provide chemical 'tags' that can be used for diverse purposes ranging from drug delivery to new modes of carbohydrate-based cell adhesion that can be used to control stem cell destiny. Finally, strategies for further engineering non-natural sugars to improve their pharmacological properties and provide complementary biological activities, such as addition of short chain fatty acids, are discussed in this article.  相似文献   

5.
Acetoin is widely used in food and other industries. A bdhA and acoA double-knockout strain of Bacillus subtilis produced acetoin at 0.72?mol/mol, a 16.4?% increased compared to the wild type. Subsequent overexpression of the alsSD operon enhanced the acetolactate synthase activity by 52 and 66?% in growth and stationary phases, respectively. However, deletion of pta gene caused little increase of acetoin production. For acetoin production by the final engineered strain, BSUW06, acetoin productivity was improved from 0.087?g/l?h, using M9 medium plus 30?g glucose/l under micro-aerobic conditions, to 0.273?g/h?l using LB medium plus 50?g glucose/l under aerobic conditions. In fermentor culture, BSUW06 produced acetoin up to 20?g/l.  相似文献   

6.
7.
Fan  Xiaoguang  Wu  Heyun  Jia  Zifan  Li  Guoliang  Li  Qiang  Chen  Ning  Xie  Xixian 《Applied microbiology and biotechnology》2018,102(20):8753-8762

In this study, a uridine and acetoin co-production pathway was designed and engineered in Bacillus subtilis for the first time. A positive correlation between acetoin and uridine production was observed and investigated. By disrupting acetoin reductase/2,3-butanediol dehydrogenasegenebdhA, the acetoin and uridine yield was increased while 2,3-butanediol formation was markedly reduced. Subsequent overexpression of the alsSD operon further improved acetoin yield and abolished acetate formation. After optimization of fermentation medium, key supplementation strategies of yeast extract and soybean meal hydrolysate were identified and applied to improve the co-production of uridine and acetoin. With a consumption of 290.33 g/L glycerol, the recombinant strain can accumulate 40.62 g/L uridine and 60.48 g/L acetoin during 48 h of fed-batch fermentation. The results indicate that simultaneous production of uridine and acetoin is an efficient strategy for balancing the carbon metabolism in engineered Bacillus subtilis. More importantly, co-production of value-added products is a possible way to improve the economics of uridine fermentation.

  相似文献   

8.
Membrane-enveloped viruses are a major cause of global health challenges, including recent epidemics and pandemics. This mini-review covers the latest efforts to develop membrane-targeting antiviral peptides that inhibit enveloped viruses by 1) preventing virus-cell fusion or 2) disrupting the viral membrane envelope. The corresponding mechanisms of antiviral activity are discussed along with peptide engineering strategies to modulate membrane-peptide interactions in terms of potency and selectivity. Application examples are presented demonstrating how membrane-targeting antiviral peptides are useful therapeutics and prophylactics in animal models, while a stronger emphasis on biophysical concepts is proposed to refine mechanistic understanding and support potential clinical translation.  相似文献   

9.
  1. Download : Download high-res image (127KB)
  2. Download : Download full-size image
  相似文献   

10.
Microorganisms have been the main sources for the production of chemicals. Production of chemicals requires the development of low-cost and higher-yield processes. Towards this goal, microbial strains with higher levels of production should be first considered. Metabolic engineering has been used extensively over the past two to three decades to increase production of these chemicals. Advances in omics technology and computational simulation are allowing us to perform metabolic engineering at the systems level. By combining the results of omics analyses and computational simulation, systems biology allows us to understand cellular physiology and characteristics, which can subsequently be used for designing strategies. Here, we review the current status of metabolic engineering based on systems biology for chemical production and discuss future prospects.  相似文献   

11.
Microorganisms have been the main sources for the production of chemicals. Production of chemicals requires the development of low-cost and higher-yield processes. Towards this goal, microbial strains with higher levels of production should be first considered. Metabolic engineering has been used extensively over the past two to three decades to increase production of these chemicals. Advances in omics technology and computational simulation are allowing us to perform metabolic engineering at the systems level. By combining the results of omics analyses and computational simulation, systems biology allows us to understand cellular physiology and characteristics, which can subsequently be used for designing strategies. Here, we review the current status of metabolic engineering based on systems biology for chemical production and discuss future prospects.  相似文献   

12.
We attempted to optimize the production of zeaxanthin in Escherichia coli by reordering five biosynthetic genes in the natural carotenoid cluster of Pantoea ananatis. Newly designed operons for zeaxanthin production were constructed by the ordered gene assembly in Bacillus subtilis (OGAB) method, which can assemble multiple genes in one step using an intrinsic B. subtilis plasmid transformation system. The highest level of production of zeaxanthin in E. coli (820 microg/g [dry weight]) was observed in the transformant with a plasmid in which the gene order corresponds to the order of the zeaxanthin metabolic pathway (crtE-crtB-crtI-crtY-crtZ), among a series of plasmids with circularly permuted gene orders. Although two of five operons using intrinsic zeaxanthin promoters failed to assemble in B. subtilis, the full set of operons was obtained by repressing operon expression during OGAB assembly with a p(R) promoter-cI repressor system. This result suggests that repressing the expression of foreign genes in B. subtilis is important for their assembly by the OGAB method. For all tested operons, the abundance of mRNA decreased monotonically with the increasing distance of the gene from the promoter in E. coli, and this may influence the yield of zeaxanthin. Our results suggest that rearrangement of biosynthetic genes in the order of the metabolic pathway by the OGAB method could be a useful approach for metabolic engineering.  相似文献   

13.
Hepatocellular carcinoma (HCC) is one of the most common malignancies and is a serious threat to people's health worldwide. The prognosis of advanced HCC is dim if left untreated. In the clinic, the treatment options for advanced HCC include surgery, radiotherapy, transcatheter arterial chemoembolization, and so forth. In recent years, molecular targeted therapy and immunotherapy have also made great progress, bringing new hope to patients with advanced HCC. In this study, therapeutic advances, current dilemma, and future directions of advanced HCC are reviewed, which might serve as a summary for clinicians and may stimulate future research.  相似文献   

14.
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interac...  相似文献   

15.

With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.

  相似文献   

16.
17.
18.
19.
The current state of research in the field of paleobotany is reviewed, with emphasis on those areas that deal with more biological approaches to paleobotany. These would include such subjects as the reproductive biology of fossil plants, pollination biology in selected groups, paleobiochemistry, and information on the interaction of plants with other organisms (plant/animal interactions) and their environment (paleoecology). Also discussed are some of the more recent contributions to our understanding of Precambrian paleobiology and early angiosperm reproduction and evolution. Finally, we offer some speculation on the contributions that various areas of paleobotany may provide in the future.  相似文献   

20.
Bacillus subtilis cells must have cytochromes for growth and can synthesize cytochromes of a-, b-, c-, d-, and o-types. After a long lag, our knowledge of the structure, genetics and specific role for these cytochromes is now growing exponentially as the result of recent research. This progress is reviewed here and includes, for example, the discovery of two different cytochrome a systems and genes required for their biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号