首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Conflict control is an important cognitive control ability and it is also crucial for human beings to execute conflict control on affective information. To address the neural correlates of cognitive control on affective conflicts, the present study recorded event-related potentials (ERPs) during a revised Eriksen Flanker Task. Participants were required to indicate the valence of the central target expression while ignoring the flanker expressions in the affective congruent condition, affective incongruent condition and neutral condition (target expressions flanked by scramble blocks). Behavioral results manifested that participants exhibited faster response speed in identifying neutral target face when it was flanked by neutral distractors than by happy distractors. Electrophysiological results showed that happy target expression induced larger N2 amplitude when flanked by sad distractors than by happy distractors and scramble blocks during the conflict monitoring processing. During the attentional control processing, happy target expression induced faster P3 response when it was flanked by happy distractors than by sad distractors, and sad target expression evoked larger P3 amplitude when it was flanked by happy distractors comparing with sad distractors. Taken together, the current findings of temporal dynamic of brain activity during cognitive control on affective conflicts shed light on the essential relationship between cognitive control and affective information processing.  相似文献   

2.
3.
With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task.  相似文献   

4.

Background

For optimal performance in conflict situations, conflict adaptation (conflict detection and adjustment) is necessary. However, the neural dynamics of conflict adaptation is still unclear.

Methods

In the present study, behavioral and electroencephalography (EEG) data were recorded from seventeen healthy participants during performance of a color-word Stroop task with a novel look-to-do transition. Within this transition, participants looked at the Stroop stimuli but no responses were required in the ‘look’ trials; or made manual responses to the Stroop stimuli in the ‘do’ trials.

Results

In the ‘look’ trials, the amplitude modulation of N450 occurred exclusively in the right-frontal region. Subsequently, the amplitude modulation of sustained potential (SP) emerged in the posterior parietal and right-frontal regions. A significantly positive correlation between the modulation of reconfiguration in the ‘look’ trials and the behavioral conflict adaptation in the ‘do’ trials was observed. Specially, a stronger information flow from right-frontal region to posterior parietal region in the beta band was observed for incongruent condition than for congruent condition. In the ‘do’ trials, the conflict of ‘look’ trials enhanced the amplitude modulations of N450 in the right-frontal and posterior parietal regions, but decreased the amplitude modulations of SP in these regions. Uniquely, a stronger information flow from centro-parietal region to right-frontal region in the theta band was observed for iI condition than for cI condition.

Conclusion

All these findings showed that top-down conflict adaptation is implemented by: (1) enhancing the sensitivity to conflict detection and the adaptation to conflict resolution; (2) modulating the effective connectivity between parietal region and right-frontal region.  相似文献   

5.
Each task requires a specific motor behavior that is tuned to task demands. For instance, writing requires a lot of accuracy while clapping does not. It is known that the brain adjusts the motor behavior to different task demands as predicted by optimal control theory. In this study, the mechanism of this reoptimization process is investigated by varying the accuracy demands of a reaching task. In this task, the width of the reaching target (0.5 or 8 cm) was varied either on a trial-to-trial basis (random schedule) or in blocks (blocked schedule). On some trials, the hand of the subjects was clamped to a rectilinear trajectory that ended 2 cm on the left or right of the target center. The rejection of this perturbation largely varied with target width in the blocked schedule but not in the random schedule. That is, subjects exhibited different motor behavior in the different schedules despite identical accuracy demands. Therefore, while reoptimization has been considered immediate and automatic, the differences in motor behavior observed across schedules suggest that the reoptimization of the motor behavior is neither happening on a trial-by-trial basis nor obligatory. The absence of trial-to-trial mechanisms, the inability of the brain to adapt to two conflicting task demands and the existence of a switching cost are discussed as possible sources of the non-optimality of motor behavior during the random schedule.  相似文献   

6.
7.
Cross-modal processing depends strongly on the compatibility between different sensory inputs, the relative timing of their arrival to brain processing components, and on how attention is allocated. In this behavioral study, we employed a cross-modal audio-visual Stroop task in which we manipulated the within-trial stimulus-onset-asynchronies (SOAs) of the stimulus-component inputs, the grouping of the SOAs (blocked vs. random), the attended modality (auditory or visual), and the congruency of the Stroop color-word stimuli (congruent, incongruent, neutral) to assess how these factors interact within a multisensory context. One main result was that visual distractors produced larger incongruency effects on auditory targets than vice versa. Moreover, as revealed by both overall shorter response times (RTs) and relative shifts in the psychometric incongruency-effect functions, visual-information processing was faster and produced stronger and longer-lasting incongruency effects than did auditory. When attending to either modality, stimulus incongruency from the other modality interacted with SOA, yielding larger effects when the irrelevant distractor occurred prior to the attended target, but no interaction with SOA grouping. Finally, relative to neutral-stimuli, and across the wide range of the SOAs employed, congruency led to substantially more behavioral facilitation than did incongruency to interference, in contrast to findings that within-modality stimulus-compatibility effects tend to be more evenly split between facilitation and interference. In sum, the present findings reveal several key characteristics of how we process the stimulus compatibility of cross-modal sensory inputs, reflecting stimulus processing patterns that are critical for successfully navigating our complex multisensory world.  相似文献   

8.
目的:探索高/低冲突不同的决策任务对其后执行控制的影响。方法:40名被试随机分配到高冲突涉及个人情感的道德两难任务组和低冲突与道德无关的决策任务组,而后分别考察两组人执行控制成绩的差异。结果:相比做出与道德无关决策的被试,完成涉及个人情感的道德两难决策任务后的被试在后续的多源冲突任务中表现更差。而且,在多源冲突任务难度最大的条件下,组间差异更大,完成涉及个人情感的道德两难决策任务的被试表现更加不如完成与道德无关决策的被试。结论:该研究表明冲突不同的决策任务对其后执行控制影响不同,冲突越大,其后的执行控制成绩越差。该研究有助于进一步加深我们对道德与非道德决策差异以及决策与执行控制关系的理解。  相似文献   

9.
The BDNF Val66Met polymorphism has been linked to decreased synaptic plasticity involved in motor learning tasks. We investigated whether individual differences in this polymorphism may promote differences in neural activity during a two-alternative forced-choice motor performance. In two separate sessions, the BOLD signal from 22 right-handed healthy men was measured during button presses with the left and right index finger upon visual presentation of an arrow. 11 men were Val66Val carriers (ValVal group), the other 11 men carried either the Val66Met or the Met66Met polymorphism (Non-ValVal group). Reaction times, resting and active motor thresholds did not differ between ValVal and Non-ValVal groups. Compared to the ValVal group the Non-ValVal group showed significantly higher BOLD signals in the right SMA and motor cingulate cortex during motor performance. This difference was highly consistent for both hands and across all four sessions. Our finding suggests that this BDNF polymorphism may not only influence complex performance during motor learning but is already associated with activation differences during rather simple motor tasks. The higher BOLD signal observed in Non-ValVal subjects suggests the presence of cumulative effects of the polymorphism on the motor system, and may reflect compensatory functional activation mediating equal behavioral performance between groups.  相似文献   

10.
JW Choi  D Ko  GT Lee  KY Jung  KH Kim 《PloS one》2012,7(7):e42312

Background

Restless legs syndrome (RLS) is a sensorimotor neurological disorder characterized by an irresistible urge to move the legs. It has been reported that RLS patients show cognitive deficits, presumably due to hyperactivity causing loss of attention, or malfunctions in the frontal region resulting from sleep deprivation. However, the mechanism underlying cognitive deficits in RLS patients is mostly unknown. As an effort to clarifying this, we investigated the differences in neural activity and phase synchrony between healthy controls and RLS patients during cognitive task performances.

Methodology/Principal Findings

Seventeen female drug-naive RLS patients were enrolled in the study, and an age-matched group of thirteen healthy female volunteers served as controls. Multichannel event-related potentials (ERPs) were recorded from RLS patients and normal controls while performing a visual oddball task. In addition to conventional analyses of ERP waveforms and spectra, interregional gamma-band phase synchrony (GBPS) was investigated to observe the differences in interregional neural synchronies between normal and RLS patient groups. Strong GBPS was observed primarily between anterior and posterior regions along the midline for both groups. Along with significant reduction and delay of P300 ERP and induced gamma-band activity (GBA), the GBPS was considerably decreased in RLS patients compared to normal subjects, especially at frontal region.

Conclusions

Overall, our results support that cognitive dysfunction in RLS patients is associated with reduced interregional neural synchrony as well as alterations in local neural activity.  相似文献   

11.
12.
The goal of this study was to train an artificial neural network to generate accurate saccades in Listing's plane and then determine how the hidden units performed the visuomotor transformation. A three-layer neural network was successfully trained, using back-prop, to take in oculocentric retinal error vectors and three-dimensional eye orientation and to generate the correct head-centric motor error vector within Listing's plane. Analysis of the hidden layer of trained networks showed that explicit representations of desired target direction and eye orientation were not employed. Instead, the hidden-layer units consistently divided themselves into four parallel modules: a dominant "vector-propagation" class (approximately 50% of units) with similar visual and motor tuning but negligible position sensitivity and three classes with specific spatial relations between position, visual, and motor tuning. Surprisingly, the vector-propagation units, and only these, formed a highly precise and consistent orthogonal coordinate system aligned with Listing's plane. Selective "lesions" confirmed that the vector-propagation module provided the main drive for saccade magnitude and direction, whereas a balance between activity in the other modules was required for the correct eye-position modulation. Thus, contrary to popular expectation, error-driven learning in itself was sufficient to produce a "neural" algorithm with discrete functional modules and explicit coordinate systems, much like those observed in the real saccade generator.  相似文献   

13.
The influence of a secondary task on concurrent postural control was explored in twenty-one dyslexic children (mean age: 10.4±0.3 years). Data were compared with twenty age-matched non-dyslexic children. As a secondary task, a modified Stroop test was used, in which words were replaced with pictures of fruits. The postural control of children was recorded in standard Romberg condition as the children were asked to name the colour of fruits appearing consecutively on a computer screen. Two conditions were tested: a congruent condition, in which the fruit was drawn in its natural ripe colour, and a non-congruent colour condition (NC), in which the fruit was drawn in three abnormal colours. A fixating condition was used as baseline. We analyzed the surface, length and mean speed of the center of pressure and measured the number of correct responses in the Stroop-like tasks. Dyslexic children were seen to be significantly more unstable than non-dyslexic ones. For both groups of children, the secondary task significantly increased postural instability in comparison with the fixating condition. The number of correct responses in the modified Stroop task was significantly higher in the non-dyslexic than in the dyslexic group. The postural instability observed in dyslexic children is in line with the cerebellar hypothesis and supports the idea of a deficit in automatic performance in such children. Furthermore, in accordance with cross domain competition model, our findings show that attentional resources are used to a greater extent by the secondary task than in controlling body stability.  相似文献   

14.
15.
It has been repeatedly shown that functional magnetic resonance imaging (fMRI) triggers distress and neuroendocrine response systems. Prior studies have revealed that sympathetic arousal increases, particularly at the beginning of the examination. Against this background it appears likely that those stress reactions during the scanning procedure may influence task performance and neural correlates. However, the question how sympathetic arousal elicited by the scanning procedure itself may act as a potential confounder of fMRI data remains unresolved today. Thirty-seven scanner naive healthy subjects performed a simple cued target detection task. Levels of salivary alpha amylase (sAA), as a biomarker for sympathetic activity, were assessed in samples obtained at several time points during the lab visit. SAA increased two times, immediately prior to scanning and at the end of the scanning procedure. Neural activation related to motor preparation and timing as well as task performance was positively correlated with the first increase. Furthermore, the first sAA increase was associated with task induced deactivation (TID) in frontal and parietal regions. However, these effects were restricted to the first part of the experiment. Consequently, this bias of scanner related sympathetic activation should be considered in future fMRI investigations. It is of particular importance for pharmacological investigations studying adrenergic agents and the comparison of groups with different stress vulnerabilities like patients and controls or adolescents and adults.  相似文献   

16.

Introduction

We used a multidimensional approach to study isometric force control in single and dual-task conditions.

Methods

Multiple measures of performance, efficiency, variability, and structural interference were calculated at low and higher force levels under single (force maintenance) and dual-task (force maintenance and reaction time) conditions.

Results

Reaction time and signal-to-noise ratio were larger in the dual-task conditions. They were also greater for the higher force condition, while sample entropy was lower. Perturbation analyses revealed smaller relative amplitude of downward perturbations for the higher force level.

Discussion

Attentional effort and efficiency are positively related when force level increases, and inversely related to entropy. These relations were presumably mediated by attentional investment. Behavioral perturbations show that attentional resources and structural interference models are not mutually exclusive to account for dual-task situation. Overall, the present study highlights the interest of a multidimensional assessment of force control.  相似文献   

17.
Despite the recent influx of increasingly dexterous prostheses, there remains a lack of sufficiently intuitive control methods to fully utilize this dexterity. As a solution to this problem, a control framework is proposed which allows the control of an arbitrary number of Degrees of Freedom (DOF) through a single electromyogram (EMG) control input. Initially, the joint motions of nine test subjects were recorded while grasping and catching a cylinder. Inherent differences emerged depending upon whether the cylinder was grasped or caught. These data were used to form a distinct synergy for each task, described as the families of parametric functions of time that share a mutual time vector. These two Temporally Synchronized Synergies (TSS) were derived to reflect the task dependent control strategies adopted by the initial participants. These synergies were then mapped to a dexterous artificial hand that was subsequently controlled by two subjects with transradial amputations. The EMG signals from these subjects were used to replace the time vector shared by the synergies, enabling the subjects to perform both tasks with a dexterous artificial hand using only a single EMG input. After a ten minute training period, the subjects learned to use the dexterous artificial hand to grasp and catch the cylinder with 100.0% and 65.0% average success rates, respectively.  相似文献   

18.
We must frequently adapt our movements in order to successfully perform motor tasks. These visuomotor adaptations can occur with or without our awareness and so, have generally been described by two mechanisms: strategic control and spatial realignment. Strategic control is a conscious modification used when discordance between an intended and actual movement is observed. Spatial realignment is an unconscious recalibration in response to subtle differences between an intended and efferent movement. Traditional methods of investigating visuomotor adaptation often involve simplistic, repetitive motor goals and so may be vulnerable to subject boredom or expectation. Our laboratory has recently developed a novel, engaging computer-based task, the Viewing Window, to investigate visuomotor adaptation to large, apparent distortions. Here, we contrast behavioural measures of visuomotor adaptation during the Viewing Window task when either gradual progressive rotations or large, sudden rotations are introduced in order to demonstrate that this paradigm can be utilized to investigate both strategic control and spatial realignment. The gradual rotation group demonstrated significantly faster mean velocities and spent significantly less time off the object compared to the sudden rotation group. These differences demonstrate adaptation to the distortion using spatial realignment. Scan paths revealed greater after-effects in the gradual rotation group reflected by greater time spent scanning areas off of the object. These results demonstrate the ability to investigate both strategic control and spatial realignment. Thus, the Viewing Window provides a powerful engaging tool for investigating the neural basis of visuomotor adaptation and impairment following injury and disease.  相似文献   

19.
Leeches swim by undulating; they alternately form crests thentroughs at their anterior end and move Them backward, therebyproducing forward thrust. These movements are accomplished byalternating contractions of dorsal and ventral longitudinalmuscles in each of the 21 body segments. These contractionsare caused by bursts of impulses in groups of excitatory andinhibitory motor neurons. Connections among motor neurons helpto coordinate these bursts: synergistic muscle excitors areelectrotonically coupled, which aids in keeping their burstsnearly synchronous; muscle inhibitors also inhibit the excitorsto the same muscles, and it is this inhibition which keeps theexcitors from being tonically active during swimming. Neuronssensitive to either dorsal or ventral body wall stretch producereciprocal stretch reflexes to the muscle excitors, probablyvia the inhibitors. That these stretch reflexes may be involvedin generating the periodic bursts is supported by the resultsof both behavioral and electrophysiological experiments.  相似文献   

20.
Design and implementation of a sequential controller based on the concept of artificial neural networks for a flexible manufacturing system are presented. The recurrent neural network (RNN) type is used for such a purpose. Contrary to the programmable controller, an RNN-based sequential controller is based on a definite mathematical model rather than depending on experience and trial and error techniques. The proposed controller is also more flexible because it is not limited by the restrictions of the finite state automata theory. Adequate guidelines of how to construct an RNN-based sequential controller are presented. These guidelines are applied to different case studies. The proposed controller is tested by simulations and real-time experiments. These tests prove the successfulness of the proposed controller performances. Theoretical as well as experimental results are presented and discussed indicating that the proposed design procedure using Elman's RNN can be effective in designing a sequential controller for event-based type manufacturing systems. In addition, the simulation results assure the effectiveness of the proposed controller to outperform the effect of noisy inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号