首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete sequence of the mitochondrial genome of Podagrion sp. (Hymenoptera: Torymidae) is described. The mitogenome was 15,845 bp in size, and contained typical sets of mitochondrial genes. The base composition of the Podagrion sp. mitogenome was also biased toward A + T bases (81.8%). The mitochondrial genome of Podagrion sp. has a weak AT skew (0.07) and a strong GC skew (?0.26). Podagrion sp. exhibits a novel rearrangement compared with the ancestral order, including six protein-coding genes (nad3, cox3, atp6, atp8, cox2 and cox1), which have inverted to the minor strand from the major strand. The A + T-rich region of Podagrion sp., which is located between trnN and trnI, have five tandem repeats. The apomorphic rearrangements, including the conserved block “cox3-atp6-atp8-cox2-cox1-nad5-nad4-nad4l-nad6-cob” and the special locations of trnV and trnA, were mapped onto the phylogeny of Proctotrupomorpha.  相似文献   

2.
Woo PC  Zhen H  Cai JJ  Yu J  Lau SK  Wang J  Teng JL  Wong SS  Tse RH  Chen R  Yang H  Liu B  Yuen KY 《FEBS letters》2003,555(3):469-477
We report the complete sequence of the mitochondrial genome of Penicillium marneffei, the first complete mitochondrial DNA sequence of a thermal dimorphic fungus. This 35 kb mitochondrial genome contains the genes encoding ATP synthase subunits 6, 8, and 9 (atp6, atp8, and atp9), cytochrome oxidase subunits I, II, and III (cox1, cox2, and cox3), apocytochrome b (cob), reduced nicotinamide adenine dinucleotide ubiquinone oxireductase subunits (nad1, nad2, nad3, nad4, nad4L, nad5, and nad6), ribosomal protein of the small ribosomal subunit (rps), 28 tRNAs, and small and large ribosomal RNAs. Analysis of gene contents, gene orders, and gene sequences revealed that the mitochondrial genome of P. marneffei is more closely related to those of molds than yeasts.  相似文献   

3.
Yuan Y  Li Q  Kong L  Yu H 《Molecular biology reports》2012,39(2):1287-1292
Molluscs in general, and bivalves in particular, exhibit an extraordinary degree of mitochondrial gene order variation when compared with other metazoans. The complete mitochondrial genome of Solen grandis (Bivalvia: Solenidae) was determined using long-PCR and genome walking techniques. The entire mitochondrial genome sequence of S. grandis is 16,784 bp in length, and contains 36 genes including 12 protein-coding genes (atp8 is absent), 2 ribosomal RNAs, and 22 tRNAs. All genes are encoded on the same strand. Compared with other species, it bears a novel gene order. Besides these, we find a peculiar non-coding region of 435 bp with a microsatellite-like (TA)12 element, poly-structures and many hairpin structures. In contrast to the available heterodont mitochondrial genomes from GenBank, the complete mtDNA of S. grandis has the shortest cox3 gene, and the longest atp6, nad4, nad5 genes.  相似文献   

4.
《Journal of Asia》2022,25(4):101988
Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a devastating invasive pest worldwide, causing severe damage to tomatoes. Recently, it has been recorded in the northwestern and southwestern parts of China. Here, the mitogenomes and genetic variation of two newly invaded T. absoluta populations in Xinjiang and Yunnan, were determined. The results showed that the complete mitogenome size of T. absoluta is 15298 bp for the individual from Xinjiang and 15296 bp for the individual from Yunnan, which were both longer than the reported mitogenome from Spain (15290 bp). The mitogenome sequences of individuals collected from three locations showed high levels of sequence similarity, except for 8 polymorphic sites, which were in genes cox2 (1 site), cox3 (2 sites), cob (1 site), atp6 (1 site), nad1 (2 sites) and nad5 (1 site). Tuta absoluta mitogenomes share many features with other 6 Gelechiidae mitogenomes, except for several differences in the start and stop codons of protein-coding genes and the length of intergenic spacers. Seven partial mitochondrial genes (cox1, cox2, cox3, atp6, cob, nad1, and nad5) were used for genetic variation analysis, and significant population differentiation was found between the two populations based on cox2, atp6, nad1, and nad5. The complete mitogenomes and sensitive mitochondrial gene markers reported here provide useful data for further population genetics study of this pest.  相似文献   

5.
Mitochondria are eukaryotic organelles supporting individual life-style via generation of proton motive force and cellular energy, and indispensable metabolic pathways. As part of genome sequencing of the white rot Basidiomycota species Phlebia radiata, we first assembled its mitochondrial genome (mtDNA). So far, the 156 348 bp mtDNA is the second largest described for fungi, and of considerable size among eukaryotes. The P. radiata mtDNA assembled as single circular dsDNA molecule containing genes for the large and small ribosomal RNAs, 28 transfer RNAs, and over 100 open reading frames encoding the 14 fungal conserved protein subunits of the mitochondrial complexes I, III, IV, and V. Two genes (atp6 and tRNA-IleGAU) were duplicated within 6.1 kbp inverted region, which is a unique feature of the genome. The large mtDNA size, however, is explained by the dominance of intronic and intergenic regions (sum 80% of mtDNA sequence). The intergenic DNA stretches harness short (≤200 nt) repetitive, dispersed and overlapping sequence elements in abundance. Long self-splicing introns of types I and II interrupt eleven of the conserved genes (cox1,2,3; cob; nad1,2,4,4L,5; rnl; rns). The introns embrace a total of 57 homing endonucleases with LAGLIDADGD and GYI-YIG core motifs, which makes P. radiata mtDNA to one of the largest known reservoirs of intron-homing endonucleases. The inverted duplication, intergenic stretches, and intronic features are indications of dynamics and genetic flexibility of the mtDNA, not fully recognized to this extent in fungal mitochondrial genomes previously, thus giving new insights for the evolution of organelle genomes in eukaryotes.  相似文献   

6.
Many vectors of human malaria belong to complexes of morphologically indistinguishable cryptic species. Here we report the analysis of the newly sequenced complete mitochondrial DNA molecules from six recognized or putative species of one such group, the Neotropical Anopheles albitarsis complex. The molecular evolution of these genomes had been driven by purifying selection, particularly strongly acting on the RNA genes. Directional mutation pressure associated with the strand-asynchronous asymmetric mtDNA replication mechanism may have shaped a pronounced DNA strand asymmetry in the nucleotide composition in these and other Anopheles species. The distribution of sequence polymorphism, coupled with the conflicting phylogenetic trees inferred from the mitochondrial DNA and from the published white gene fragment sequences, indicates that the evolution of the complex may have involved ancient mtDNA introgression. Six protein coding genes (nad5, nad4, cox3, atp6, cox1 and nad2) have high levels of sequence divergence and are likely informative for population genetics studies. Finally, the extent of the mitochondrial DNA variation within the complex supports the notion that the complex consists of a larger number of species than until recently believed.  相似文献   

7.
We sequenced and annotated the complete mitochondrial (mt) genome of the priapulid Priapulus caudatus in order to provide a source of phylogenetic characters including an assessment of gene order arrangement. The genome was 14,919 bp in its entirety with few, short non-coding regions. A number of protein-coding and tRNA genes overlapped, making the genome relatively compact. The gene order was: cox1, cox2, trnK, trnD, atp8, atp6, cox3, trnG, nad3, trnA, trnR, trnN, rrnS, trnV, rrnL, trnL(yaa), trnL(nag), nad1, -trnS(nga), -cob, -nad6, trnP, -trnT, nad4L, nad4, trnH, nad5, trnF, -trnE, -trnS(nct), trnI, -trnQ, trnM, nad2, trnW, -trnC, -trnY; where '-' indicates genes transcribed on the opposite strand. The gene order, although unique amongst Metazoa, shared the greatest number of gene boundaries and the longest contiguous fragments with the chelicerate Limulus polyphemus. The mt genomes of these taxa differed only by a single inversion of 18 contiguous genes bounded by rrnS and trnS(nct). Other arthropods and nematodes shared fewer gene boundaries but considerably more than the most similar non-ecdysozoan.  相似文献   

8.
Bactrocera ritsemai is a dacine fruit fly found in Indonesia. We report here the complete mitogenome of this fruit fly from Lombok, Indonesia determined by Illumina MiSeq sequencing and its phylogenetic relationship with its congeners and related tephritid taxa. The whole mitogenome of B. ritsemai had a total length of 15,927 bp, comprising 37 genes – 13 protein-coding genes (PCGs), 2 ribosomal ribonucleic acid (rRNA) and 22 transfer ribonucleic acid (tRNA) genes – and a control region (D-loop). Of the PCGs, 6 (atp6, cob, cox2, cox3, nad4, nad4l) had ATG start codon, 4 (nad2, nad3, nad5, nad6) had ATT, and one each had ATA (nad1), GTG (atp8) and TCG (cox1). Seven PCGs (atp6, atp8, cox2, cox3, nad2, nad4l, nad6) had TAA stop codon, 3 (cob, nad3, nad4) had TAG, and 3 had incomplete stop codon (cox1 – TA; nad1, nad5 – T). The TΨC-loop of tRNA was absent in trnF while trnS1 lacked the DHU-loop. Phylogenetic analysis based on 15 mt-genes (13 PCGs + 2 rRNA genes) indicated B. ritsemai forming a sister group with B. umbrosa and the subgenus Bactrocera was monophyletic. The genera Bactrocera and Zeugodacus were monophyletic while the subfamilies Dacinae and Tephritinae were paraphyletic. A broader taxa sampling of the Tephritidae is needed to better elucidate the phylogenetics and systematics of the tribes and subfamilies of tephritid fruit flies.  相似文献   

9.
In recent years, the global pandemic of bat-associated pathogens has led to increasing attention on bat ectoparasites. Numerous studies have identified human-associated pathogens in Nycteribiidae, indicating their potential as vectors. In this study, the first complete sequencing of the mitochondrial genome of Nycteribia allotopa Speiser, 1901 was sequenced and analyzed. We also compared the mitochondrial sequences of N. allotopa with those available in the database for other Nycteribiidae species. The complete mitochondrial genome of N. allotopa was found to be 15,161 bp in size with an A + T content of 82.49%. Nucleotide polymorphism analysis of 13 protein-coding genes from five species of Nycteribiidae showed that nad6 exhibited the most significant variation, while cox1 was the most conserved. Furthermore, selection pressure analysis revealed cox1 to exhibit the strongest purifying selection, while atp8, nad2, nad4L, and nad5 showed slightly looser purifying selection. Pairwise genetic distances indicated that cox1 and cox2 were evolving comparatively slowly, whereas atp8, nad2, and nad6 were evolving comparatively quickly. Phylogenetic trees constructed using Bayesian inference and maximum likelihood methods demonstrated that all four families within the superfamily Hippoboscoidea clustered into one branch each, indicating their monophyly. N. allotopa was found to be most closely related to the same genus N. parvula. This study significantly enriches the molecular database for Nycteribiidae and provides invaluable reference data for future species identification, phylogenetic analysis, and exploration of their potential as vectors for human-associated pathogens.  相似文献   

10.
Precious corals are soft corals belonging to the family Coralliidae (Anthozoa: Octocorallia: Alcyonacea) and class Anthozoa, whose skeletal axes are used for jewelry.The family Coralliidae includes ca. 40 species and was originally thought to comprise of the single genus Corallium. In 2003, Corallium was split into two genera, Corallium and Paracorallium, and seven species were moved to this newly identified genus on the bases of morphological features. Previously, we determined the complete mitochondrial genome sequence of two precious corals Paracorallium japonicum and Corallium konojoi, in order to clarify their systematic positions. The two genomes showed high nucleotide sequence identity, but their gene order arrangements were not identical. Here, we determined three complete mitochondrial genome sequences from the one specimen of Mediterranean Corallium rubrum and two specimens of Corallium elatius coming from Kagoshima (South Japan). The circular mitochondrial genomes of C. rubrum and C. elatius are 18,915 bp and 18,969–18,970 bp in length, respectively, and encode 14 typical octocorallian protein-coding genes (nad16, nad4L, cox13, cob, atp6, atp8, and mtMutS, which is an octocoral-specific mismatch repair gene homologue), two ribosomal RNA genes (rns and rnl), and one transfer RNA (trnM). The overall nucleotide differences between C. konojoi and each C. elatius haplotype (T2007 and I2011) are only 10 and 11 nucleotides, respectively; this degree of similarity indicates that C. elatius and C. konojoi are very closely related species. Notably, the C. rubrum mitochondrial genome shows more nucleotide sequence identity to P. japonicum (99.5%) than to its congeneric species C. konojoi (95.3%) and C. elatius (95.3%). Moreover, the gene order arrangement of C. rubrum was the same as that of P. japonicum, while that of C. elatius was the same as C. konojoi. Phylogenetic analysis based on three mitochondrial genes from 24 scleraxonian species shows that the family Coralliidae is separated into two distinct groups, recovering Corallium as a paraphyletic genus. Our results indicate that the currently accepted generic classification of Coralliidae should be reconsidered.  相似文献   

11.
Octocoral mitochondrial (mt) DNA is subject to an exceptionally low rate of substitution, and it has been suggested that mt genome content and structure are conserved across the subclass, an observation that has been supported for most octocorallian families by phylogenetic analyses using PCR products spanning gene boundaries. However, failure to recover amplification products spanning the nad4L-msh1 gene junction in species from the family Isididae (bamboo corals) prompted us to sequence the complete mt genome of a deep-sea bamboo coral (undescribed species). Compared to the "typical" octocoral mt genome, which has 12 genes transcribed on one strand and 5 genes on the opposite (cox2, atp8, atp6, cox3, trnM), in the bamboo coral genome a contiguous string of 5 genes (msh1, rnl, nad2, nad5, nad4) has undergone an inversion, likely in a single event. Analyses of strand-specific compositional asymmetry suggest that (i) the light-strand origin of replication was also inverted and is adjacent to nad4, and (ii) the orientation of the heavy-strand origin of replication (OriH) has reversed relative to that of previously known octocoral mt genomes. Comparative analyses suggest that intramitochondrial recombination and errors in replication at OriH may be responsible for changes in gene order in octocorals and hexacorals, respectively. Using primers flanking the regions at either end of the inverted set of five genes, we examined closely related taxa and determined that the novel gene order is restricted to the deep-sea subfamily Keratoisidinae; however, we found no evidence for strand-specific mutational biases that may influence phylogenetic analyses that include this subfamily of bamboo corals.  相似文献   

12.
The complete arrangement of genes in the mitochondrial (mt) genome is known for 12 species of insects, and part of the gene arrangement in the mt genome is known for over 300 other species of insects. The arrangement of genes in the mt genome is very conserved in insects studied, since all of the protein-coding and rRNA genes and most of the tRNA genes are arranged in the same way. We sequenced the entire mt genome of the wallaby louse, Heterodoxus macropus, which is 14,670 bp long and has the 37 genes typical of animals and some noncoding regions. The largest noncoding region is 73 bp long (93% A+T), and the second largest is 47 bp long (92% A+T). Both of these noncoding regions seem to be able to form stem-loop structures. The arrangement of genes in the mt genome of this louse is unlike that of any other animal studied. All tRNA genes have moved and/or inverted relative to the ancestral gene arrangement of insects, which is present in the fruit fly Drosophila yakuba. At least nine protein-coding genes (atp6, atp8, cox2, cob, nad1-nad3, nad5, and nad6) have moved; moreover, four of these genes (atp6, atp8, nad1, and nad3) have inverted. The large number of gene rearrangements in the mt genome of H. macropus is unprecedented for an arthropod.  相似文献   

13.
14.
15.
In the flatworm genus Schistosoma, species of which include parasites of biomedical and veterinary importance, mitochondrial gene order is radically different in some species. A PCR-based survey of 19 schistosomatid spp. established which of 14 Schistosoma spp. have the ancestral (plesiomorphic) or derived gene order condition. A phylogeny for Schistosoma was estimated and used to infer the origin of the gene order change which is present in all members of a clade containing Schistosoma incognitum and members of the traditionally recognised Schistosoma indicum, Schistosoma mansoni and Schistosoma haematobium spp. groups. Schistosoma turkestanicum, with the plesiomorphic gene order state, is sister to this clade. Common interval analysis suggests change in gene order, from ancestral to derived, consisted of two sequential transposition events: (a) nad1_nad3 to nad3_nad1 and (b) [atp6,nad2]_[nad3,nad1,cox1,rrnL,rrnS,cox2,nad6] to [nad3,nad1,cox1,rrnL,rrnS,cox2,nad6]_[atp6,nad2], where gene order of fragments within square brackets remain unchanged. Gene order change is rare in parasitic flatworms and is a robust synapomorphy for schistosome spp. that exhibit it. The schistosomatid phylogeny casts some doubt on the origin of Schistosoma (Asian or African), highlights the propensity for species to host switch amongst mammalian (definitive) hosts, and indicates the likely importance of snail (intermediate) hosts in determining and defining patterns of schistosome radiation and continental invasion. Mitogenomic sampling of Schistosoma dattai and Schistosoma harinasutai to determine gene order, and within key species, especially S. turkestanicum and S. incognitum, to determine ancestral ranges, may help discover the geographic origins of gene order change in the genus. Samples of S. incognitum from India and Thailand suggest this taxon may include cryptic species.  相似文献   

16.
The doubly uniparental inheritance (DUI) of some bivalve mollusks is the major exception to the common maternal inheritance of mitochondria in animals. DUI involves two mitochondrial lineages with paternal and maternal transmission routes, and it appears as a complex phenomenon requiring both nuclear and mitochondrial adaptations. DUI distribution seems to be scattered among the Bivalvia, and there are several clues for its multiple origins. In this paper, we investigate whether the incipient DUI systems had left possible selective signatures on mitochondrial genomes. Alongside the outstanding divergence of amino acid sequences, we confirmed strong purifying selection to act on mitochondrial genes. However, we found evidence that distinct episodes of intense directional pressure are associated with the origins of different DUI systems: We interpret these signals as footprints of the coevolution with the nuclear genome that ought to take place at the base of a DUI clade. Six genes (atp6, cox1, cox2, cox3, nad4L, and nad6) seem to be more commonly linked to the appearance of DUI. We also identified few putative DUI‐specific mutations, thus extending support to the hypothesis of multiple independent origins of this complex phenomenon.  相似文献   

17.
Zhao-Can Shen  Lei Chen  Long Chen  Yuan-Xi Li 《Genomics》2019,111(5):1059-1065
The taxonomic status and phylogenetic affinities of Mymaridae and Scelionidae are controversial, based on similarities between these families in the characteristics of adults, larvae, and eggs. In this study, we sequenced the mitochondrial (mt) genomes of representatives from these two families and found that the derived secondary structure of tRNA-Arg was the same in each family due to the absence of the D-stem. The segment of “cox1 trnL2 cox2 trnK trnD atp8 atp6 cox3” in Gonatocerus sp. (Mymaridae) is conserved and distinct from those of four other species of Chalcidoidea but similar to that in Proctotrupoidea and Platygastroidea. However, phylogenetic analysis indicated that Gonatocerus sp. was sister group to other species of Chalcidoidea. Comparisons based on complete gene orders may be more useful in a phylogenetic and systematic context, as different branches may exhibit partially homoplastic gene orders.  相似文献   

18.
Mitochondrial genomes have been extensively studied for phylogenetic purposes and to investigate intra- and interspecific genetic variations. In recent years, numerous groups have undertaken sequencing of platyhelminth mitochondrial genomes. Haplorchis taichui (family Heterophyidae) is a trematode that infects humans and animals mainly in Asia, including the Mekong River basin. We sequenced and determined the organization of the complete mitochondrial genome of H. taichui. The mitochondrial genome is 15,130 bp long, containing 12 protein-coding genes, 2 ribosomal RNAs (rRNAs, a small and a large subunit), and 22 transfer RNAs (tRNAs). Like other trematodes, it does not encode the atp8 gene. All genes are transcribed from the same strand. The ATG initiation codon is used for 9 protein-coding genes, and GTG for the remaining 3 (nad1, nad4, and nad5). The mitochondrial genome of H. taichui has a single long non-coding region between trnE and trnG. H. taichui has evolved as being more closely related to Opisthorchiidae than other trematode groups with maximal support in the phylogenetic analysis. Our results could provide a resource for the comparative mitochondrial genome analysis of trematodes, and may yield genetic markers for molecular epidemiological investigations into intestinal flukes.  相似文献   

19.
The apocritan Hymenoptera show extraordinary features in mitochondrial genomes, but no complete sequence has been reported for the basal lineage, Evanioidea. Here, we sequenced the complete mitochondrial genome of Evania appendigaster. This genome is 17,817 bp long; with low A+T content, 77.8%, compared with other hymenopteran species. Four tRNA genes were rearranged, among which remote inversion is the dominant gene rearrangement event. Gene shuffling is caused by tandem duplication-random loss while remote inversion is best explained by recombination. The start codon of nad1 was found as TTG, which might be common across Hymenoptera. trnS2 and trnK use abnormal anticodons TCT and TTT, respectively, and the D-stem pairings in trnS2 are absent. The secondary structure of two rRNA genes are predicted and compared with those in other insects. Five long intergenic spacers were present, including a long intergenic spacer between atp8 and atp6, where these two genes overlap in the previously reported animal genomes. A conserved motif was found between trnS1 and nad1, which is proposed to be associated with mtTERM. The A+T-rich region is 2,325 bp long, among the longest in insects, and contains a tandem repeat region.  相似文献   

20.
We present an overview of the gene content and organization of the mitochondrial genome of Dictyostelium discoideum. The mitochondria genome consists of 55,564?bp with an A + T content of 72.6%. The identified genes include those for two ribosomal RNAs (rnl and rns), 18 tRNAs, ten subunits of the NADH dehydrogenase complex (nad1, 2, 3, 4, 4L, 5, 6, 7, 9 and 11), apocytochrome b (cytb), three subunits of the cytochrome oxidase (cox1/2 and 3), four subunits of the ATP synthase complex (atp1, 6, 8 and 9), 15 ribosomal proteins, and five other ORFs, excluding intronic ORFs. Notable features of D. discoideum mtDNA include the following. (1) All genes are encoded on the same strand of the DNA and a universal genetic code is used. (2) The cox1 gene has no termination codon and is fused to the downstream cox2 gene. The 13 genes for ribosomal proteins and four ORF genes form a cluster 15.4?kb long with several gene overlaps. (3) The number of tRNAs encoded in the genome is not sufficient to support the synthesis of mitochondrial protein. (4) In total, five group I introns reside in rnl and cox1/2, and three of those in cox1/2 contain four free-standing ORFs. We compare the genome to other sequenced mitochondrial genomes, particularly that of Acanthamoeba castellanii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号