首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND AIMS: Clonal fragments of the rhizomatous dwarf bamboo Sasa palmata, which widely predominates in temperate regions of Japan, were grown under heterogeneous resource conditions such as gap understories or nutrient-patchy grassland. Clonal fragments develop multiple ramets with long rhizomes and appear to be physiologically integrated by the translocation of assimilates. The glasshouse experiment reported here was designed to clarify the mechanisms of physiological integration of nitrogen more precisely. METHODS: To assess how resource conditions influence the amount of nitrogen translocation, and which organ acts as the strongest sink, two experiments were conducted that traced movement of 15N label between interconnected pairs of ramets to compare homogeneous and heterogeneous light and soil nitrogen conditions. KEY RESULTS: The amount of 15N translocated to leaves was between 9% and 11% greater in high-N and high-light ramets in the heterogeneous compared with homogeneous treatments. Under heterogeneous soil nitrogen conditions, translocation increased from individual ramets in resource-rich patches to ramets in resource-poor patches, while the reverse was true under heterogeneous light environments, reflecting differences in the positions of leaves that act as the strongest sinks. Neither the mass increments nor the total mass of clonal fragments was significantly affected by heterogeneity of either light or nutrients, possibly because the experimental period was too short for differences to manifest themselves. CONCLUSIONS: This study clearly demonstrated that nitrogen is readily translocated between ramets, particularly under heterogeneous resource conditions. The translocation patterns were governed by functional 'division of labour' mechanisms that resulted in net nitrogen movement from understory sites to gaps, thereby enhancing the carbon acquisition of the whole fragment. Thus, physiological integration may provide benefits for S. palmata when it is growing under heterogeneous conditions in which there are deficits of certain environmental resources.  相似文献   

2.
Recent meta-analyses and simulation studies have suggested that the relationship between soil resource heterogeneity and plant diversity (heterogeneity–diversity relationship; HDR) may be negative when heterogeneity occurs at small spatial scales. To explore different mechanisms that can explain a negative HDR, we conducted a mesocosm experiment combining a gradient of soil nutrient availability (low, medium, high) and scale of heterogeneity (homogeneous, large-scale heterogeneous, small-scale heterogeneous). The two heterogeneous treatments were created using chessboard combinations of low and high fertility patches, and had the same overall fertility as the homogeneous medium treatment. Soil patches were designed to be relatively larger (156 cm2) and smaller (39 cm2) than plant root extent. We found plant diversity was significantly lower in the small-scale heterogeneous treatment compared to the homogeneous treatment of the same fertility. Additionally, low fertility patches in the small-scale heterogeneous treatment had lower diversity than patches of the same size in the low fertility treatment. Shoot and root biomass were larger in the small-scale heterogeneous treatment than in the homogeneous treatment of the same fertility. Further, we found that soil resource heterogeneity may reduce diversity indirectly by increasing shoot biomass, thereby enhancing asymmetric competition for light resources. When soil resource heterogeneity occurs at small spatial scales it can lower plant diversity by increasing asymmetric competition belowground, since plants with large root systems can forage among patches and exploit soil resources. Additionally, small-scale soil heterogeneity may lower diversity indirectly, through increasing light competition, when nutrient uptake by competitive species increases shoot biomass production.  相似文献   

3.
We present a consumer-resource model in which individual consumers subsist on a continuum of resource distributed over a very large number of small “bite-sized” patches, each patch being sufficiently small that all its resource is eaten whenever a consumer visits. This form of consumer–resource interaction forces a heterogeneous distribution of resource among the patches, and may dampen out the large amplitude, consumer-resource cycles that are predicted by traditional models of well-mixed, spatially homogeneous systems. The resource equilibrium does not increase with enrichment, a prediction that distinguishes this model from models that invoke direct or indirect consumer density dependence as a stabilizing mechanism.  相似文献   

4.
Animals foraging in heterogeneous environments benefit from information on local resource density because it allows allocation of foraging effort to rich patches. In foraging groups, this information may be obtained by individuals through sampling or by observing the foraging behaviour of group members. We studied the foraging behaviour of goldfish (Carassius auratus) groups feeding in pools on resources distributed in patches. First, we determined if goldfish use sampling information to distinguish between patches of different qualities, and if this allowed goldfish to benefit from a heterogeneous resource distribution. Then, we tested if group size affected the time dedicated to food searching and ultimately foraging success. The decision of goldfish to leave a patch was affected by whether or not they found food, indicating that goldfish use an assessment rule. Giving-up density was higher when resources were highly heterogeneous, but overall gain was not affected by resource distribution. We did not observe any foraging benefits of larger groups, which indicate that grouping behaviour was driven by risk dilution. In larger groups the proportion searching for food was lower, which suggests interactions among group members. We conclude that competition between group members affects individual investments in food searching by introducing the possibility for alternative strategies, such as scrounging or resource monopolisation.  相似文献   

5.
The plastic response of clonal plant to different patch quality is not always the same and the degree is different too. So the result of this kind of foraging behaviour is different. In order to make clear whether the ramtes stay in favourable patches and get the quantitative relationship between the ramets distribution among patches and the available resource amount in heterogeneous environment, we develop a theoretical work under ideal free distribution (IFD) theory framework by neglecting some morphological plasticity of the spacer in this article. The results of our general model show that the ramet distribution should obey input matching rule at equilibrium. That means the ratio of ramet number in different patches should be equal to the ratio of available resource amount in these patches. We also use the simulation to predict the distribution pattern under history mattering. The results show that the initial ramets number has significant influence on the final distribution: over matching and under matching both can occur. More initial ramets in favourable patch result in over matching and more initial ramets in unfavourable patch result in under matching. The degree of the deviation from input matching rule is great when the difference of patches is small. These results prove that ideal free distribution theory works the same with animals. The ramets can stay in favourable patches sometimes in spite of the plasticity of the spacer, and the distribution depends on both patch quality and the history factors. But these results are true only when the functional response is type II.  相似文献   

6.
The acquisition of information is a fundamental part of individual foraging behaviour in heterogeneous and changing environments. We examine how foragers may benefit from utilizing a simple learning rule to update estimates of temporal changes in resource levels. In the model, initial expectation of resource conditions and rate of replacing past information by new experiences are genetically inherited traits. Patch-time allocation differs between learners and foragers that use a fixed patch-leaving threshold throughout the foraging season. It also deviates from foragers that obtain information about the environment at no cost. At the start of a foraging season, learners sample the environment by frequent movements between patches, sacrificing current resource intake for information acquisition. This is done to obtain more precise and accurate estimates of resource levels, resulting in increased intake rates later in season. Risk of mortality may alter the trade-off between exploration and exploitation and thus change patch sampling effort. As lifetime expectancy decreases, learners invest less in information acquisition and show lower foraging performance when resource level changes through time.  相似文献   

7.
Yield of the clonal plant Glechoma hederacea was compared at different spatial scales, in heterogeneous and homogeneous environments providing the same amount of nutrients. For the heterogeneous treatments, environments were created with different patch sizes and different degrees of contrast in nutrient concentration between patches of different quality. Total clone yield differed by almost 2.5-fold across treatments, being highest in environments with large patches and high contrast, lowest in environments with small patches and high contrast, and intermediate under homogeneous conditions. Compared with plants in homogeneous conditions, there were significant increases or decreases in yield at all scales of measurement in many of the heterogeneous treatments. These effects on yield reflected a combination of local responses to growing conditions and modification of these responses due to physiological integration with other parts of the plant growing in contrasting conditions, supporting the proposal of de Kroon et al. (2005 New Phytol 166:73–82). The results show that plant yield at all scales is strongly dependent on environmental context, and that maximum yield can only be realized under a limited range of heterogeneous conditions.  相似文献   

8.
In order to explore the behavioral mechanisms underlying aggregation of foragers on local resource patches, it is necessary to manipulate the location, quality and quantity of food patches. This requires careful control over the conditions in the foraging arena, which may be a challenging task in the case of aquatic resource-consumer systems, like that of freshwater zooplankton feeding on suspended algal cells. We present an experimental tool designed to aid behavioral ecologists in exploring the consequences of resource characteristics for zooplankton aggregation behavior and movement decisions under conditions where the boundaries and characteristics (quantity and quality) of food patches can be standardized. The aggregation behavior of Daphnia magna and D. galeata x hyalina was tested in relation to i) the presence or absence of food or ii) food quality, where algae of high or low nutrient (phosphorus) content were offered in distinct patches. Individuals of both Daphnia species chose tubes containing food patches and D. galeata x hyalina also showed a preference towards food patches of high nutrient content. We discuss how the described equipment complements other behavioral approaches providing a useful tool to understand animal foraging decisions in environments with heterogeneous resource distributions.  相似文献   

9.
Interconnected ramets of clonal plants can functionally specialize in the uptake of resources from aboveground and/or underground sources. Ramet pairs of the clonal stoloniferous herb Glechoma Iongltuba L. were grown In spatially heterogeneous environments with complementary availability of light and nutrients. Plasticity with respect to root-shoot ratio, fitness-related traits (biomass, number of ramets and dry weight per ramet), morphological traits (lamina area, root length) were experimentally examined. The aim was to understand the adaptation of G. Iongltuba to an environment with reciprocal patchiness of light and soil nutrients by plasticity In Its root-shoot ratio and clonal morphology. The results showed that the performance of ramets growing In patches with high light Intensity and low soil nutrients into the adjacent opposite patches was Increased in terms of fitness-related traits. However, the performance of those from patches with low light Intensity and high soil nutrients into the adjacent opposite patches was not changed. The root-shoot ratio and clonal morphology were plastic. Morphological traits such as lamina area and root length were altered In a way that enhanced the capture of light resources and soil nutrients. Apparent reciprocal resource transport between the ramets In an environment of reciprocal patchiness of resources can enhance the growth of ramets with complementary resource deficiencies.  相似文献   

10.
Shumway  Scott W. 《Annals of botany》1995,76(3):225-233
Resource sharing between ramets growing across environmentalresource gradients may have important consequences for clonalplant populations and community dynamics. As the clonal saltmarsh grasses, Spartina patens and Distichlis spicata, vegetativelycolonize disturbance-generated bare patches, they span steepgradients in soil salinity and available sunlight. Examinationof water relations and carbon translocation in the field andgreenhouse revealed that connected ramets of these marsh grassesshare water and carbon in response to gradients in resourceavailability. Ramets colonizing disturbance patches rely uponphysiological integration with connected parent ramets to overcomewater stress associated with hypersaline patch environments.In addition, upon establishment inside a bare patch, daughterramets may translocate carbon back to shaded parent ramets inthe surrounding vegetation outside of patches. Physiological integration of ramets colonizing disturbance-generatedbare patches and parent ramets outside of patches may explainthe predominance of vegetative invasion over sexual recruitmentin marsh succession. Hypersaline soil conditions, which inhibitseedling recruitment into patches, have little effect on thesuccess of clonal colonizers that can import water from parentramets. This success appears to be due to the ability of clonalmarsh grasses to translocate water and carbon products betweenramets growing across opposing gradients in resource availability.Copyright1995, 1999 Academic Press Clonal integration, Distichlis spicata, halophytes, salt marsh ecology, secondary succession, Spartina patens  相似文献   

11.
Clonal integration facilitates the growth and reproduction of clonal plants by providing the ability to share resources among ramets in heterogeneous environments. The benefits of clonal integration for plant growth may depend on a contrast in resource availability and may encounter costs, especially when a young part of the clone is growing across a border between richer and poorer conditions than the old part. We studied a clonal amphibian plant growing across a border between an aquatic and a terrestrial ecosystem, which typically differ in the availability of resources. We asked whether the young part of the clone is supporting the old part with phosphorus and whether this support has costs. We performed an experiment with Alternanthera philoxeroides where plants grow from water to a terrestrial habitat. The terrestrial habitat had either a low or high phosphorus supply, and the connection between the old and young parts of the clone was either left intact or split. We determined that the young part of the clone growing in a terrestrial habitat supported the old part with phosphorus when growing on a substrate rich in phosphorus. We have found no cost of this resource translocation; on the contrary, whole clones increased not only their accumulation of phosphorus, but also of nitrogen. Our study shows how an amphibian plant may profit from heterogeneous habitats by resource sharing in a clonal network.  相似文献   

12.
1.Animals exploiting renewable resource patches are faced with complex multi-location routing problems. In many species, individuals visit foraging patches in predictable sequences called traplines. However, whether and how they optimize their routes remains poorly understood.2.In this study, we demonstrate that traplining bumblebees (Bombus terrestris) make a trade-off between minimizing travel distance and prioritizing the most rewarding feeding locations.3.Individual bees trained to forage on five artificial flowers of equal reward value selected the shortest possible route as a trapline. After introducing a single highly rewarding flower to the array, they re-adjusted their routes visiting the most rewarding flower first provided the departure distance from the shortest possible route remained small (18%). When routes optimizing the initial rate of reward intake were much longer (42%), bees prioritized short travel distances.4.Under natural conditions, in which individual flowers vary in nectar productivity and replenish continuously, it might pay bees to prioritize highly rewarding locations, both to minimize the overall number of flowers to visit and to beat competitors.5.We discuss how combined memories of location and quality of resource patches could allow bees and other traplining animals to optimize their routing decisions in heterogeneous environments.  相似文献   

13.
Shahid Naeem 《Oecologia》1990,84(1):29-38
Summary Complex or non-additive differences in the distribution and abundance of arthropod species inhabiting the water-filled bracts ofHeliconia imbricata can be created by simple manipulations of resource levels. The primary resources for these assemblages are the corollas of the flowers that accumulate in the bracts. Removing or adding corollas to individual bracts changes the pattern in the abundance of arthropod species within each bract such that bracts with different treatments ultimately differ in composition and numerical associations among species. These results suggest that direct and indirect resource-mediated factors can structure or significantly affect the distribution and abundance of species in these and perhaps other assemblages. Thus, in natural communities, if resources are heterogeneous among patches (such as among the bracts in this study) structure in a given patch may be a function of the resource level of that patch and can differ significantly from neighboring patches that provide different resource levels.  相似文献   

14.
The idea that populations are spatially structured has become a very powerful concept in ecology, raising interest in many research areas. However, despite dispersal being a core component of the concept, it typically does not consider the movement behavior underlying any dispersal. Using individual‐based simulations in continuous space, we explored the emergence of a spatially structured population in landscapes with spatially heterogeneous resource distribution and with organisms following simple area‐concentrated search (ACS); individuals do not, however, perceive or respond to any habitat attributes per se but only to their foraging success. We investigated the effects of different resource clustering pattern in landscapes (single large cluster vs. many small clusters) and different resource density on the spatial structure of populations and movement between resource clusters of individuals. As results, we found that foraging success increased with increasing resource density and decreasing number of resource clusters. In a wide parameter space, the system exhibited attributes of a spatially structured populations with individuals concentrated in areas of high resource density, searching within areas of resources, and “dispersing” in straight line between resource patches. “Emigration” was more likely from patches that were small or of low quality (low resource density), but we observed an interaction effect between these two parameters. With the ACS implemented, individuals tended to move deeper into a resource cluster in scenarios with moderate resource density than in scenarios with high resource density. “Looping” from patches was more likely if patches were large and of high quality. Our simulations demonstrate that spatial structure in populations may emerge if critical resources are heterogeneously distributed and if individuals follow simple movement rules (such as ACS). Neither the perception of habitat nor an explicit decision to emigrate from a patch on the side of acting individuals is necessary for the emergence of such spatial structure.  相似文献   

15.
1. To test whether clonal macrophytes can select favourable habitats in heterogeneous environments, clonal fragments of the stoloniferous submerged macrophyte Vallisneria spiralis were subjected to conditions in which light intensity and substratum nutrients were patchily distributed. The allocation of biomass accumulation and ramet production of clones to the different patches was examined. 2. The proportion of both biomass and ramet number of clones allocated to rich patches was significantly higher than in poor patches. The greatest values of both clone and leaf biomass were produced in the heterogeneous light treatment, in which clones originally grew from light‐rich to light‐poor patches, while clones produced the most offspring ramets in the treatments with heterogeneous substratum nutrients. Similarly, root biomass had the highest values in nutrient‐rich patches when clones grew from nutrient‐rich to nutrient‐poor patches. 3. The quality of patches in which parent ramets established significantly influenced the foraging pattern. When previously established in rich patches, a higher proportion of biomass was allocated to rich patches, whereas a higher proportion of ramet number was allocated to rich patches when previously established in poor patches. 4. Results demonstrate that the clonal macrophyte V. spiralis can exhibit foraging in submerged heterogeneous environments: when established under resource‐rich conditions V. spiralis remained in favourable patches, whereas if established in adverse conditions it could escape by allocating more ramets to favourable patches.  相似文献   

16.
Abstract.  1. Herbivory can induce resistance in a plant and the induced phenotype may be disfavoured by subsequent herbivores. Yet, as the distance between plants in a population increases, limited mobility may make a herbivore more likely to feed and oviposit on host plants in its immediate surroundings.
2. The present study tested whether a herbivore's preference and distribution across plants with different induced phenotypes was influenced by the spatial distribution of plants. A fragmented population of Solanum dulcamara plants was created. This consisted of discrete, spatially separated patches with different histories of damage, either herbivory from adult flea beetles ( Psylliodes affinis ), tortoise beetles ( Plagiometriona clavata ), or mechanical damage. Each patch was separated by 7 m and consisted of 12 plants that were spaced 30 cm apart. Then a fixed number of adult tortoise beetles were introduced to each patch, and movement and oviposition within and between spatially separate homogeneous patches (receiving one type of damage) were compared with movement and oviposition within heterogeneous patches (containing all three types of damage) over the growing season.
3. Flea beetle and tortoise beetle herbivory consistently induced different phytochemical responses in S. dulcamara (polyphenol oxidase and peroxidase), and adult tortoise beetles avoided oviposition on the flea beetle induced plants within heterogeneous patches. However, between homogeneous patches, plant phenotype did not influence oviposition. Colonisation by naturally occurring flea beetle adults followed a similar pattern.
4. These results suggest that the heterogeneity of plant phenotypes can influence herbivore choice and distribution at small but not large spatial scales.  相似文献   

17.
Context-dependent foraging behaviour is acknowledged and well documented for a diversity of animals and conditions. The contextual determinants of plant foraging behaviour, however, are poorly understood. Plant roots encounter patchy distributions of nutrients and soil fungi. Both of these features affect root form and function, but how they interact to affect foraging behaviour is unknown. We extend the use of the marginal value theorem to make predictions about the foraging behaviour of roots, and test our predictions by manipulating soil resource distribution and inoculation by soil fungi. We measured plant movement as both distance roots travelled and time taken to grow through nutrient patches of varied quality. To do this, we grew Achillea millefolium in the centers of modified pots with a high-nutrient patch and a low-nutrient patch on either side of the plant (heterogeneous) or patch-free conditions (homogeneous). Fungal inoculation, but not resource distribution, altered the time it took roots to reach nutrient patches. When in nutrient patches, root growth decreased relative to homogeneous soils. However, this change in foraging behaviour was not contingent upon patch quality or fungal inoculation. Root system breadth was larger in homogeneous than in heterogeneous soils, until measures were influenced by pot edges. Overall, we find that root foraging behaviour is modified by resource heterogeneity but not fungal inoculation. We find support for predictions of the marginal value theorem that organisms travel faster through low-quality than through high-quality environments, with the caveat that roots respond to nutrient patches per se rather than the quality of those patches.  相似文献   

18.
无芒雀麦是浑善达克沙地植物群落中占优势的多年生根茎禾草.研究了克隆整合特性对无芒雀麦在异质性盐分环境中存活和生长的影响.结果表明,克隆整合显著提高了无芒雀麦分株在高盐环境中的存活能力,耗-益分析表明无芒雀麦在高盐斑块中分株的生物量、分株数、根茎节数和根茎总长显著受益于克隆整合,而与之相连的非盐分斑块中的分株却没有产生显著的损耗.因而,克隆整合特性是无芒雀麦对异质性环境形成的重要适应对策,它使无芒雀麦能够扩展到不适合植物生长的高盐分斑块中,从而增加了无芒雀麦在浑善达克沙地中的存活和生长,提高了其在半干旱沙化地区的适合度.  相似文献   

19.
A mathematical model is presented that describes a system where two consumer species compete exploitatively for a single renewable resource. The resource is distributed in a patchy but homogeneous environment; that is, all patches are intrinsically identical. The two consumer species are referred to as diggers and grazers, where diggers deplete the resource within a patch to lower densities than grazers. We show that the two distinct feeding strategies can produce a heterogeneous resource distribution that enables their coexistence. Coexistence requires that grazers must either move faster than diggers between patches or convert the resources to population growth much more efficiently than diggers. The model shows that the functional form of resource renewal within a patch is also important for coexistence. These results contrast with theory that considers exploitation competition for a single resource when the resource is assumed to be well mixed throughout the system.  相似文献   

20.
BACKGROUND AND AIMS: In clonal plants, internode connections allow translocation of photosynthates, water, nutrients and other substances among ramets. Clonal plants form large systems that are likely to experience small-scale spatial heterogeneity. Physiological and morphological responses of Fragaria vesca to small-scale heterogeneity in soil quality were investigated, together with how such heterogeneity influences the placement of ramets. As a result of their own activities plants may modify the suitability of their habitats over time. However, most experiments on habitat selection by clonal plants have not generally considered time as an important variable. In the present study, how the foraging behaviour of clonal plants may change over time was also investigated. METHODS: In a complex of environments with different heterogeneity, plant performance was determined in terms of biomass, ramet production and photosynthetic activity. To identify habitat selection, the number of ramets produced and patch where they rooted were monitored. KEY RESULTS: Parent ramets in heterogeneous environments showed significantly higher maximum and effective quantum yields of photosystem II than parents in homogeneous environments. Parents in heterogeneous environments also showed significantly higher investment in photosynthetic biomass and stolon/total biomass, produced longer stolons, and had higher mean leaf size than parents in homogeneous environments. Total biomass and number of offspring ramets were similar in both environments. However, plants in homogeneous environments showed random allocation of offspring ramets to surrounding patches, whereas plants in heterogeneous environments showed preferential allocation of offspring to higher-quality patches. CONCLUSIONS: The results suggest that F. vesca employs physiological and morphological strategies to enable efficient resource foraging in heterogeneous environments and demonstrate the benefits of physiological integration in terms of photosynthetic efficiency. The findings indicate that short-term responses cannot be directly extrapolated to the longer term principally because preferential colonization of high-quality patches means that these patches eventually show reduced quality. This highlights the importance of considering the time factor in experiments examining responses of clonal plants to heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号