首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface EMG in advanced hand prosthetics   总被引:2,自引:0,他引:2  
One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible. This work is partially supported by the project NEURObotics, FP6-IST-001917.  相似文献   

2.
It is widely known that the pinch-grip forces of the human hand are linearly related to the weight of the grasped object. Less is known about the relationship between grip force and grip stiffness. We set out to determine variations to these dependencies in different tasks with and without visual feedback. In two different settings, subjects were asked to (a) grasp and hold a stiffness-measuring manipulandum with a predefined grip force, differing from experiment to experiment, or (b) grasp and hold this manipulandum of which we varied the weight between trials in a more natural task. Both situations led to grip forces in comparable ranges. As the measured grip stiffness is the result of muscle and tendon properties, and since muscle/tendon stiffness increases more-or-less linearly as a function of muscle force, we found, as might be predicted, a linear relationship between grip force and grip stiffness. However, the measured stiffness ranges and the increase of stiffness with grip force varied significantly between the two tasks. Furthermore, we found a strong correlation between regression slope and mean stiffness for the force task which we ascribe to a force stiffness curve going through the origin. Based on a biomechanical model, we attributed the difference between both tasks to changes in wrist configuration, rather than to changes in cocontraction. In a new set of experiments where we prevent the wrist from moving by fixing it and resting it on a pedestal, we found subjects exhibiting similar stiffness/force characteristics in both tasks.  相似文献   

3.
In order to move the finger the tendon force must overcome the gliding resistance of the tendon as well as the forces to move the joints, finger inertias, and external load. These sources, combined, make up the work of flexion (WOF) which has been experimentally used to evaluate the finger function. In this study, we have designed a new device, which can measure the forces at the proximal and distal end of the tendon during finger flexion, so that gliding resistance can be isolated from the WOF. Two index fingers from a pair of human cadaver hands were used for testing this device. Preliminary data showed that internal resistance occupied about 10% of WOF with an intact tendon. However, after tendon repair, the gliding resistance increased 31% of WOF for a modified Kessler repair and 50% of WOF for a Becker repair compared to intact tendon. We simulated joint stiffness by injection of saline solution into the proximal interphalangeal joint. This increased the overall WOF but not the gliding resistance. We believe that this testing device provides a useful tool to evaluate finger function after tendon repair in an experimental model.  相似文献   

4.
Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object’s vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial). Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands.  相似文献   

5.
The state-of-the-art feed-forward control of active hand prostheses is rather poor. Even dexterous, multi-fingered commercial prostheses are controlled via surface electromyography (EMG) in a way that enforces a few fixed grasping postures, or a very basic estimate of force. Control is not natural, meaning that the amputee must learn to associate, e.g., wrist flexion and hand closing. Nevertheless, recent literature indicates that much more information can be gathered from plain, old surface EMG. To check this issue, we have performed an experiment in which three amputees train a Support Vector Machine (SVM) using five commercially available EMG electrodes while asked to perform various grasping postures and forces with their phantom limbs. In agreement with recent neurological studies on cortical plasticity, we show that amputees operated decades ago can still produce distinct and stable signals for each posture and force. The SVM classifies the posture up to a precision of 95% and approximates the force with an error of as little as 7% of the signal range, sample-by-sample at 25 Hz. These values are in line with results previously obtained by healthy subjects while feed-forward controlling a dexterous mechanical hand. We then conclude that our subjects could finely feed-forward control a dexterous prosthesis in both force and position, using standard EMG in a natural way, that is, using the phantom limb.  相似文献   

6.
Rock climbers are often using the unique crimp grip position to hold small ledges. Thereby the proximal interphalangeal (PIP) joints are flexed about 90 degrees and the distal interphalangeal joints are hyperextended maximally. During this position of the finger joints bowstringing of the flexor tendon is applying very high load to the flexor tendon pulleys and can cause injuries and overuse syndromes. The objective of this study was to investigate bowstringing and forces during crimp grip position. Two devices were built to measure the force and the distance of bowstringing and one device to measure forces at the fingertip. All measurements of 16 fingers of four subjects were made in vivo. The largest amount of bowstringing was caused by the flexor digitorum profundus tendon in the crimp grip position being less using slope grip position (PIP joint extended). During a warm-up, the distance of bowstringing over the distal edge of the A2 pulley increased by 0.6mm (30%) and was loaded about 3 times the force applied at the fingertip during crimp grip position. Load up to 116N was measured over the A2 pulley. Increase of force in one finger holds by the quadriga effect was shown using crimp and slope grip position.  相似文献   

7.
A numerical optimization procedure was used to determine finger positions that minimize and maximize finger tendon and joint force objective functions during piano play. A biomechanical finger model for sagittal plane motion, based on finger anatomy, was used to investigate finger tendon tensions and joint reaction forces for finger positions used in playing the piano. For commonly used piano key strike positions, flexor and intrinsic muscle tendon tensions ranged from 0.7 to 3.2 times the fingertip key strike force, while resultant inter-joint compressive forces ranged from 2 to 7 times the magnitude of the fingertip force. In general, use of a curved finger position, with a large metacarpophalangeal joint flexion angle and a small proximal interphalangeal joint flexion angle, reduces flexor tendon tension and resultant finger joint force.  相似文献   

8.
In the human hand, independent movement control of individual fingers is limited. One potential cause for this is mechanical connections between the tendons and muscle bellies corresponding to the different fingers. The aim of this study was to determine the tendon displacement of the flexor digitorum superficialis (FDS) of both the instructed and the neighboring, non-instructed fingers during single finger flexion movements. In nine healthy subjects (age 22–29 years), instructed and non-instructed FDS finger tendon displacement of the index, middle and ring finger was measured using 2D ultrasound analyzed with speckle tracking software in two conditions: active flexion of all finger joints with all fingers free to move and active flexion while the non-instructed fingers were restricted. Our results of the free movement protocol showed an average tendon displacement of 27 mm for index finger flexion, 21 mm for middle finger flexion and 17 mm for ring finger flexion. Displacements of the non-instructed finger tendons (≈12 mm) were higher than expected based of the amount of non-instructed finger movement. In the restricted protocol, we found that, despite minimal joint movements, substantial non-instructed finger tendon displacement (≈9 mm) was still observed, which was interpreted as a result of tendon strain. When this strain component was subtracted from the tendon displacement of the non-instructed fingers during the free movement condition, the relationship between finger movement and tendon displacement of the instructed and non-instructed finger became comparable. Thus, when studying non-instructed finger tendon displacement it is important to take tendon strain into consideration.  相似文献   

9.
Patterns of precision grasp are described in stumptail macaques (Macaca arctoides) before and after lesions of the fasciculus cuneatus (FC). Three monkeys were videotaped while reaching for and grasping small food items. From these videotapes, records were made of the style and outcome of each grasp. Kinematic measurements were also made to describe grip formation and terminal grasp. During grip formation, grip aperture was measured as the distance between the tips of the index finger and the thumb. For terminal grasp, the joint angles of the index finger were measured. The majority of grasps by normal monkeys were of the precision type, in which the item was carried between the tips of the index finger and thumb. Each normal monkey approached objects with a highly consistent grip formation; that is, the fingertips formed a small grip aperture during the approach, and the aperture varied little on repeated grasps. To grasp an item, the forefinger moved in a multiarticular pattern, in which the proximal joint flexed and the distal joint extended. As a result of this combination of movements, the forefinger pad was placed directly onto the object. Following FC transection, the monkeys were studied for 10 months, beginning 1 month after the lesion, to allow for recovery from the acute effects of surgery. The monkeys could grasp the food items, but they rarely opposed the fingertips in precision grasp. Grip formation was altered and was characterized either by excessive grip aperture or by little to no finger opening. All of the monkeys used the table surface to help grasp items. Combined multiarticular patterns of flexion and extension were never observed postoperatively; they were replaced by flexion at all joints of the fingers. These results suggest that the FCs are more important for precision grasping than for other, less refined grasp forms (e.g., power grasps; Napier, 1956). The FCs provide critical proprioceptive feedback to cerebral areas involved in the planning and/or the execution of these movements.  相似文献   

10.
For controlling dexterous prosthetic hand with a high number of active Degrees of Freedom (DOF),it is necessary to reliably extract control volitions of finger motions from the human body.In this study,a large variety of finger motions are discriminated based on the diversities of the pressure distribution produced by the mechanical actions of muscles on the forearm.The pressure distribution patterns corresponding to the motions were measured by sensor array which is composed of 32 Force Sensitive Resistor (FSR) sensors.In order to map the pressure patterns with different finger motions,a multiclass classifier was designed based on the Support Vector Machine (SVM) algorithm.The multi-subject experiments show that it is possible to identify as many as seventeen different finger motions,including individual finger motions and multi-finger grasping motions,with the accuracy above 99% in the in-session validation.Further,the cross-session validation demonstrates that the performance of the proposed method is robust for use if the FSR array is not reset.The results suggest that the proposed method has great application prospects for the control of multi-DOF dexterous hand prosthesis.  相似文献   

11.
The purpose of the present study was to investigate whether corticospinal projections from human supplementary motor area (SMA) are functional during precise force control with the precision grip (thumb-index opposition). Since beta band corticomuscular coherence (CMC) is well-accepted to reflect efferent corticospinal transmission, we analyzed the beta band CMC obtained with simultaneous recording of electroencephalographic (EEG) and electromyographic (EMG) signals. Subjects performed a bimanual precise visuomotor force tracking task by applying isometric low grip forces with their right hand precision grip on a custom device with strain gauges. Concurrently, they held the device with their left hand precision grip, producing similar grip forces but without any precision constraints, to relieve the right hand. Some subjects also participated in a unimanual control condition in which they performed the task with only the right hand precision grip while the device was held by a mechanical grip. We analyzed whole scalp topographies of beta band CMC between 64 EEG channels and 4 EMG intrinsic hand muscles, 2 for each hand. To compare the different topographies, we performed non-parametric statistical tests based on spatio-spectral clustering. For the right hand, we obtained significant beta band CMC over the contralateral M1 region as well as over the SMA region during static force contraction periods. For the left hand, however, beta band CMC was only found over the contralateral M1. By comparing unimanual and bimanual conditions for right hand muscles, no significant difference was found on beta band CMC over M1 and SMA. We conclude that the beta band CMC found over SMA for right hand muscles results from the precision constraints and not from the bimanual aspect of the task. The result of the present study strongly suggests that the corticospinal projections from human SMA become functional when high precision force control is required.  相似文献   

12.

Background

Research on multisensory integration during natural tasks such as reach-to-grasp is still in its infancy. Crossmodal links between vision, proprioception and audition have been identified, but how olfaction contributes to plan and control reach-to-grasp movements has not been decisively shown. We used kinematics to explicitly test the influence of olfactory stimuli on reach-to-grasp movements.

Methodology/Principal Findings

Subjects were requested to reach towards and grasp a small or a large visual target (i.e., precision grip, involving the opposition of index finger and thumb for a small size target and a power grip, involving the flexion of all digits around the object for a large target) in the absence or in the presence of an odour evoking either a small or a large object that if grasped would require a precision grip and a whole hand grasp, respectively. When the type of grasp evoked by the odour did not coincide with that for the visual target, interference effects were evident on the kinematics of hand shaping and the level of synergies amongst fingers decreased. When the visual target and the object evoked by the odour required the same type of grasp, facilitation emerged and the intrinsic relations amongst individual fingers were maintained.

Conclusions/Significance

This study demonstrates that olfactory information contains highly detailed information able to elicit the planning for a reach-to-grasp movement suited to interact with the evoked object. The findings offer a substantial contribution to the current debate about the multisensory nature of the sensorimotor transformations underlying grasping.  相似文献   

13.
BACKGROUND: Knowledge of the biodynamic response (BR) of the human hand-arm system is an important part of the foundation for the measurement and assessment of hand-transmitted vibration exposure. This study investigated the BR of human fingers in a power grip subjected to a random vibration. METHOD: Ten male subjects were used in the experiment. Each subject applied three coupling actions to a simulated tool handle at three different finger grip force levels. RESULTS AND CONCLUSIONS: The BR is practically independent of the hand coupling actions for frequencies at or above 100 Hz. Above 50 Hz, the BR is correlated to finger and hand sizes. Increasing the finger coupling force significantly increases the BR. Therefore, hand forces should be measured and used when assessing hand-transmitted vibration exposure. The results also show that under a constant-velocity vibration, the finger vibration power absorption at frequencies above 200 Hz is approximately twice that at frequencies below 100 Hz. This suggests that the frequency weighting specified in the current ISO 5349-1 (2001) may underestimate the high frequency effect on vibration-induced finger disorders.  相似文献   

14.
The contribution of poor finger force control to age-related decline in manual dexterity is above and beyond ubiquitous behavioral slowing. Altered control of the finger forces can impart unwanted torque on the object affecting its orientation, thus impairing manual performance. Anodal transcranial direct current stimulation (tDCS) over primary motor cortex (M1) has been shown to improve the performance speed on manual tasks in older adults. However, the effects of anodal tDCS over M1 on the finger force control during object manipulation in older adults remain to be fully explored. Here we determined the effects of anodal tDCS over M1 on the control of grip force in older adults while they manipulated an object with an uncertain mechanical property. Eight healthy older adults were instructed to grip and lift an object whose contact surfaces were unexpectedly made more or less slippery across trials using acetate and sandpaper surfaces, respectively. Subjects performed this task before and after receiving anodal or sham tDCS over M1 on two separate sessions using a cross-over design. We found that older adults used significantly lower grip force following anodal tDCS compared to sham tDCS. Friction measured at the finger-object interface remained invariant after anodal and sham tDCS. These findings suggest that anodal tDCS over M1 improved the control of grip force during object manipulation in healthy older adults. Although the cortical networks for representing objects and manipulative actions are complex, the reduction in grip force following anodal tDCS over M1 might be due to a cortical excitation yielding improved processing of object-specific sensory information and its integration with the motor commands for production of manipulative forces. Our findings indicate that tDCS has a potential to improve the control of finger force during dexterous manipulation in older adults.  相似文献   

15.
The aim of this study was to assess differences of grip pattern and finger coordination in pianists and non-pianists, using hand tasks that were unrelated to pianistic practice. Eleven pianists with more than 10 years of intensive practice were compared to 14 non-pianists. Both groups performed four tasks with their right hand: (1) gross grip at fast velocity; (2) gross grip at slow velocity; (3) hook grip at fast velocity; and (4) hook grip at slow velocity. The three-dimensional coordinates were reconstructed using a kinematic analysis system, and the flexion and extension angles of the metacarpophalangeal joints were calculated. The phase diagrams were qualitatively and quantitatively appraised in order to identify differences between the groups. Principal component analysis was used to assess differences between pianists and non-pianists in terms of the reproducibility and regularity of palmar grip cycles. Coefficients of correlation between the joint angles were used to analyze finger coordination during the tasks. The pianists showed better reproducibility and regularity in the palmar grip pattern, as well as finger movements that were more coordinated when performing different hand tasks.  相似文献   

16.
A method was developed to indirectly measure friction between the flexor tendons and pulleys of the middle and ring finger in vivo. An isokinetic movement device to determine maximum force of wrist flexion, interphalangeal joint flexion (rolling in and out) and isolated proximal interphalangeal (PIP) joint flexion was built. Eccentric and concentric maximum force of these three different movements where gliding of the flexor tendon sheath was involved differently (least in wrist flexion) was measured and compared. Fifty-one hands in 26 male subjects were evaluated. The greatest difference between eccentric and concentric maximum force (29.9%) was found in flexion of the PIP joint. Differences in the rolling in and out movement (26.8%) and in wrist flexion (14.5%) were significantly smaller. The force of friction between flexor tendons and pulleys can be determined by the greater difference between eccentric and concentric maximum force provided by the same muscles in overcoming an external force during flexion of the interphalangeal joints and suggests the presence of a non-muscular force, such as friction. It constitutes of 9% of the eccentric flexion force in the PIP joint and therefore questions the low friction hypothesis at high loads.  相似文献   

17.

Background

The field of neural prosthetics aims to develop prosthetic limbs with a brain-computer interface (BCI) through which neural activity is decoded into movements. A natural extension of current research is the incorporation of neural activity from multiple modalities to more accurately estimate the user''s intent. The challenge remains how to appropriately combine this information in real-time for a neural prosthetic device.

Methodology/Principal Findings

Here we propose a framework based on decision fusion, i.e., fusing predictions from several single-modality decoders to produce a more accurate device state estimate. We examine two algorithms for continuous variable decision fusion: the Kalman filter and artificial neural networks (ANNs). Using simulated cortical neural spike signals, we implemented several successful individual neural decoding algorithms, and tested the capabilities of each fusion method in the context of decoding 2-dimensional endpoint trajectories of a neural prosthetic arm. Extensively testing these methods on random trajectories, we find that on average both the Kalman filter and ANNs successfully fuse the individual decoder estimates to produce more accurate predictions.

Conclusions

Our results reveal that a fusion-based approach has the potential to improve prediction accuracy over individual decoders of varying quality, and we hope that this work will encourage multimodal neural prosthetics experiments in the future.  相似文献   

18.
Strong motivation for developing new prosthetic hand devices is provided by the fact that low functionality and controllability—in addition to poor cosmetic appearance—are the most important reasons why amputees do not regularly use their prosthetic hands. This paper presents the design of the CyberHand, a cybernetic anthropomorphic hand intended to provide amputees with functional hand replacement. Its design was bio-inspired in terms of its modular architecture, its physical appearance, kinematics, sensorization, and actuation, and its multilevel control system. Its underactuated mechanisms allow separate control of each digit as well as thumb–finger opposition and, accordingly, can generate a multitude of grasps. Its sensory system was designed to provide proprioceptive information as well as to emulate fundamental functional properties of human tactile mechanoreceptors of specific importance for grasp-and-hold tasks. The CyberHand control system presumes just a few efferent and afferent channels and was divided in two main layers: a high-level control that interprets the user’s intention (grasp selection and required force level) and can provide pertinent sensory feedback and a low-level control responsible for actuating specific grasps and applying the desired total force by taking advantage of the intelligent mechanics. The grasps made available by the high-level controller include those fundamental for activities of daily living: cylindrical, spherical, tridigital (tripod), and lateral grasps. The modular and flexible design of the CyberHand makes it suitable for incremental development of sensorization, interfacing, and control strategies and, as such, it will be a useful tool not only for clinical research but also for addressing neuroscientific hypotheses regarding sensorimotor control.  相似文献   

19.
The human opposable thumb enables the hand to perform dexterous manipulation of objects, which requires well-coordinated digit force vectors. This study investigated the directional coordination of force vectors generated by the thumb and index finger during precision pinch. Fourteen right-handed, healthy subjects were instructed to exert pinch force on an externally stabilized apparatus with the pulps of the thumb and index finger. Subjects applied forces to follow a force-ramp profile that linearly increased from 0 to 12 N and then decreased to 0 N, at a rate of ±3 N/s. Directional relationships between the thumb and index finger force vectors were quantified using the coordination angle (CA) between the force vectors. Individual force vectors were further analyzed according to their projection angles (PAs) with respect to the pinch surface planes and the shear angles (SAs) within those planes. Results demonstrated that fingertip force directions were dependent on pinch force magnitude, especially at forces below 2 N. Hysteresis was observed in the force-CA relationship for increasing and decreasing forces and fitted with exponential models. The fitted asymptotic values were 156.0±6.6° and 150.8±9.3° for increasing and decreasing force ramps, respectively. The PA of the thumb force vector deviated further from the direction perpendicular to the pinching surface planes than that of the index finger. The SA showed that the index finger force vector deviated in the ulnar-proximal direction, whereas the thumb switched its force between the ulnar-proximal and radial-proximal directions. The findings shed light on the effects of anatomical composition, biomechanical function, and neuromuscular control in coordinating digit forces during precision pinch, and provided insight into the magnitude-dependent force directional control which potentially affects a range of dexterous manipulations.  相似文献   

20.
The objective was to investigate muscle fatigue measuring changes in force output and force tremor and electromyographic activity (EMG) during two sustained maximal isometric contractions for 60s: (1) concurrent hand grip and elbow flexion (HG and EF); or (2) hand grip and elbow extension (HG and EE). Each force tremor amplitude was decomposed into four frequency bands (1-3, 4-10, 11-20, and 21-50Hz). Surface EMGs were recorded from the flexor digitorum superficialis (FDS), extensor digitorum (ED), biceps brachii (BB) and lateral head of triceps brachii (TB). The HG and EF forces for the HG and EF and the HG force for the HG and EE declined rapidly, whereas the EE force remained almost constant near to the initial value for the first 40s and then declined. The decrease in EMG amplitude was observed not for the FDS muscle but for the ED muscle. The HG tremor amplitude for each frequency band showed similar decreasing rate, whereas the decreases in EF and EE tremor amplitudes for the lower band (below 10Hz) were slower than those for the higher band (above 11Hz). The neuromuscular mechanisms underlying muscle fatigue during sustained maximal concurrent contractions of hand grip and elbow flexion or extension are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号