首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 62 毫秒
1.
徐冬梅  彭建  董建权 《生态学报》2024,44(9):3868-3879
生态安全格局的构建有助于减缓生态系统退化和生物多样性丧失,对生物多样性保护具有重要意义。现有研究中生态源地识别的主观性较强且源地边界破碎,生态廊道对景观连通性的贡献程度也有待明确。因此,以宁夏沿黄河城市带为例,首先利用空间连续小波变换识别综合生态系统服务突变点,获取生态源地,进而基于电路模型评估功能连通性以提取生态廊道,最后量化生态廊道的连通贡献。结果显示,生态源地占研究区总面积的41.51%,其中草地占比83.27%。相比于直接提取综合生态系统服务高值区,基于空间连续小波变换识别的生态源地能较好的反映局地生态系统特征,并将景观形状指数和分形维数分别降低67.20%和8.06%,减少生态源地边缘长度从而受到外界干扰的可能性更小。生态廊道占研究区总面积的7.42%,是物种迁徙等生态过程的关键通道,有效地增强了区域景观连通性,将等效可能连通性指数和等效整体连通性指数分别提升41.76%和68.68%。生态安全格局主要位于研究区边界地段,整体呈两带分布,为宁夏沿黄河城市带阻挡周围的沙漠,保障中部的城市发展和粮食安全。然而,研究区范围内自然保护区仍存在较为严重的生态系统服务和功能连通的保护缺口。各区域的生态安全格局具备不同的生态功能,需要有针对性的差异化保护、修复与管理。  相似文献   

2.
3.
自然资源生态安全是国家安全的重要组成部分,自然资源生态安全区划对保障区域可持续发展提供了重要途径。基于自然资源数据、生态环境数据和相关区划资料,从生态敏感性与生态服务重要性角度构建了自然资源生态安全评价指标体系,进而揭示了中国自然资源生态安全的空间格局;通过建立区划的原则和指标,按照一级区主要反映自然资源空间分布格局,二级区主要揭示自然资源生态安全水平的差异,采用SOFM网络制订了中国自然资源生态安全区划方案。结果显示:(1)中国自然资源生态安全水平整体偏低,以中警与重警状态区域为主,安全和较安全状态的区域仅占24.22%,其中低安全等级区多分布于400mm等降水量线以西的干旱、半干旱区,高安全等级区则集中分布于水热资源与生物资源较为丰富的东南部地区;(2)中国自然资源生态安全区划方案包括8个一级区与27个二级区,总结归纳各大区自然资源的特征和威胁生态安全的问题,并针对二级区自然资源生态安全状况提出了对策建议。研究结果可为分区、分类推进全国自然资源可持续利用和国土空间优化提供理论支持与决策依据。  相似文献   

4.
5.
6.
    
Phase separation is a thermodynamic process leading to the formation of compositionally distinct phases. For the past few years, numerous works have shown that biomolecular phase separation serves as biogenesis mechanisms of diverse intracellular condensates, and aberrant phase transitions are associated with disease states such as neurodegenerative diseases and cancers. Condensates exhibit rich phase behaviors including multiphase internal structuring, noise buffering, and compositional tunability. Recent studies have begun to uncover how a network of intermolecular interactions can give rise to various biophysical features of condensates. Here, we review phase behaviors of biomolecules, particularly with regard to regular solution models of binary and ternary mixtures. We discuss how these theoretical frameworks explain many aspects of the assembly, composition, and miscibility of diverse biomolecular phases, and highlight how a model-based approach can help elucidate the detailed thermodynamic principle for multicomponent intracellular phase separation.  相似文献   

7.
Despite the evidence that fauna play complex and critical roles in ecosystems (e.g. pollination and nutrient cycling) and the knowledge that they need to be considered in restoration, fauna often remain poorly represented in restoration goal setting, monitoring and assessments of restoration success. Fauna clearly are integral to the aspirations of achieving full ecosystem recovery. However, over‐reaching assumptions about the unassisted return of fauna to restored sites, low investment in fauna monitoring, and minimal consideration of the requirements for fauna monitoring in regulatory guidance and standards appear to have led to the historically vegetation‐centric approaches to rehabilitation and ecological restoration. We argue that ecological complexities render assumptions of unassisted fauna return inappropriate in many situations and may represent a missed opportunity to enhance ecological outcomes and improve restoration trajectories. We advocate for greater consideration of fauna as facilitators of ecological restoration and, particularly for well‐funded projects, for monitoring to place greater emphasis on examining the behaviour and resilience of restored fauna communities. There is a clear need for both industry and regulators to recognise that fauna can be crucial facilitators of restoration and appreciate that the return and monitoring of functional faunal communities can be costly, challenging and may require detailed study across a wide range of taxonomic groups. Failure to advance from business as usual models may risk leaving a legacy of ostensibly functional, but biodiversity‐depauperate, restored ecosystems.  相似文献   

8.
9.
This paper critically reviews developments in the conceptualization and elaboration of the River Ecosystem Health (REH) concept. Analysis of literature shows there is still no consistent meaning of the central concept Ecosystem Health, resulting in models (i.e. elaborations) that have unclear and insufficient conceptual grounds. Furthermore, a diverse terminology is associated with describing REH, resulting in confusion with other concepts. However, if the concept is to have merit and longevity in the field of river research and management, unambiguous definition of the conceptual meaning and operational domain are required. Therefore a redefinition is proposed, based on identified characteristics of health and derived from considering semantic and conceptual definitions. Based on this definition, REH has merit in a broader context of river system health that considers societal functioning next to ecological functioning. Assessment of health needs integration of measures of multiple, complementary attributes and analysis in a synthesized way. An assessment framework is proposed that assesses REH top-down as well as bottom up by combining indicators of system stress responses (i.e. condition) with indicators identifying the causative stress (i.e. stressor). The scope of REH is covered by using indicators of system activity, metabolism (vigour), resilience, structure and interactions between system components (organization). The variety of stress effects that the system may endure are covered by using biotic, chemical as well as physical stressors. Besides having a unique meaning, the REH metaphor has added value to river management by being able to mobilize scientists, practitioners and publics and seeing relationships at the level of values. It places humans at the centre of the river ecosystem, while seeking to ensure the durability of the ecosystem of which they are an integral part. Optimization of the indicator set, development of aggregation and classification methodologies, and implementation of the concept within differing international frames are considered main aims for future research.  相似文献   

10.
    
Biodiversity is declining at a rapid pace and, with it, the ecosystem functions that support ecosystem services. To counter this, ecosystem restoration is necessary. While the relationship between biodiversity and ecosystem functioning has been studied in depth, the relationship between ecosystem restoration and ecosystem functioning is studied less. We performed an observational study in grasslands undergoing restoration management toward Nardus grassland. Eight ecosystem functions, representing flows of energy, matter or information between functional compartments, were measured across five successive restoration phases along the restoration gradient. The levels of functioning were then compared along the gradient for both the individual functions and a multifunctionality index. We hypothesized that plant richness increases when grasslands are more restored and this increase in biodiversity is paralleled by an increase in ecosystem functioning. In our study, the degraded grasslands, generally occurring on more nutrient-rich soils, were dominated by competitive fast-growing species, resulting in higher process rates and thus in higher, faster functioning. Likewise, more restored grasslands exhibited slower process rates and, thus, lower functioning. When studying ecosystem functioning, value judgments are easily made. Especially in a restoration context, high functioning does not necessarily equals well functioning, as this depends on the stakeholder perspective. We need to ask ourselves if a high functioning ecosystem is most desirable, especially in a restoration or conservation context. Policy frameworks will need to balance these goals.  相似文献   

11.
    
1. Species abundance, biomass, and identity are the main factors that influence ecosystem functioning. Previous studies have shown that community attributes and species identity help to maintain natural ecosystem functioning. 2. This study examined how species identity, biomass, and abundance in dung pats (i.e. density) of dung beetles affect multiple ecological functions: dung removal, seed dispersal, and germination. Specifically, two species of tunnellers were targeted: Onthophagus illyricus (Scopoli, 1763) and Copris lunaris (Linnaeus, 1758). In accordance with their natural abundance, densities ranging from 10 to 80 individuals were considered for O. illyricus, and those from two to eight were considered for C. lunaris, spanning the total biomass per treatment from 0.22 to 1.76 g. 3. Results showed that, even at higher abundance, O. illyricus is not as efficient as C. lunaris. These results show that species identity, biomass, and density are crucial factors for maintaining ecosystem functioning. The combined effect of species identity and density/biomass facilitated dung removal and seed dispersal. Conversely, species identity is the only relevant factor for germination. Moreover, relationships among functions depend on the species investigated: C. lunaris showed a positive correlation between dung removal and seed dispersal, whereas O. illyricus showed a positive correlation between germination and dung removal. 4. In conclusion, optimal ecosystem functioning depends on multiple factors, such as density and species identity, and thus also on body size, nesting strategies and ecological functions investigated. Moreover, the loss of larger and efficient species cannot be compensated by higher abundances of small species.  相似文献   

12.
熊善高  秦昌波  于雷  路路  关杨  万军  李新 《生态学报》2018,38(22):7899-7911
生态空间管制是我国国土空间管制的重要内容。针对目前国内对生态空间认知有差异,对其划定技术方法还处于探索阶段的情况下,以生态系统服务功能和生态敏感性技术评价方法为手段,以广西壮族自治区南宁市为研究对象,开展了基于生态系统服务功能重要性和生态敏感性的生态空间划定方法的探索研究。结果表明:(1)研究区域内主导的生态系统服务功能主要为生物多样性维护功能和水土保持功能,其次为水源涵养功能。生态系统综合服务功能重要性类型以一般重要为主,约占研究区总面积的42.32%。(2)研究区生态敏感性以水土流失敏感性为主,其次为石漠化敏感类型。生态环境综合敏感类型以敏感为主,约占总面积的85.44%。(3)研究区内初步划定生态空间总面积约9325.27 km~2,占研究区总面积的42.19%,占研究区内生态用地面积的76.59%。土地利用类型以林地为主,约占生态空间面积的83.65%。划定的生态空间范围涵盖了绝大部分生态用地。本研究在一定程度上丰富了生态空间的内涵,可为进一步理解和划定生态空间提供参考与借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号