首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the leg and joint stiffness during human movement would provide important information that could be utilized for evaluating sports performance and for injury prevention. In the present study, we examined the determinants of the difference in the leg stiffness between the endurance-trained and power-trained athletes. Seven distance runners and seven power-trained athletes performed in-place hopping, matching metronome beats at 3.0 and 1.5Hz. Leg and joint stiffness were calculated from kinetic and kinematics data. Electromyographic activity (EMG) was recorded from six leg muscles. At both hopping frequencies, the power-trained athletes demonstrated significantly higher leg stiffness than the distance runners. Hip, knee, and ankle joints were analyzed for stiffness and touchdown angles. Ankle stiffness was significantly greater in the power-trained athletes than the distance runners at 3.0Hz as was knee stiffness at 1.5Hz. There was no significant difference in touchdown angle between the DR and PT groups at either hopping frequencies. When significant difference in EMG activity existed between two groups, it was always greater in the distance runners than the power-trained athletes. These results suggest that (1) the difference in leg stiffness between endurance-trained and power-trained athletes is best attributed to increased joint stiffness, and (2) the difference in joint stiffness between the two groups may be attributed to a lack of similarity in the intrinsic stiffness of the muscle-tendon complex rather than in altered neural activity.  相似文献   

2.
With the aim of comparing kinematic and neuromuscular parameters of Bandal Chagui kicks between 7 elite and 7 subelite taekwondo athletes, nine Bandal Chaguis were performed at maximal effort in a selective reaction time design, simulating the frequency of kicks observed in taekwondo competitions. Linear and angular leg velocities were recorded through 3D motion capture system. Ground reaction forces (GRF) were evaluated by a force platform, and surface electromyographic (sEMG) signals were evaluated in the vastus lateralis, biceps femoris, rectus femoris, tensor fasciae lata, adductor magnus, gluteus maximus, gluteus medius, and gastrocnemius lateralis muscles of the kicking leg. sEMG data were processed to obtain the cocontraction indices (CI) of antagonist vs. overall (agonist and antagonist) muscle activity. CI was measured for the hip and knee, in flexion and extension, and for hip abduction. Premotor, reaction (kinetic and kinematic), and kicking times were evaluated. Timing parameters, except kinetic reaction time, were faster in elite athletes. Furthermore, CI and angular velocity during knee extension, foot and knee linear velocity, and horizontal GRF were significantly higher in elite than in subelite athletes. In conclusion, selected biomechanical parameters of Bandal Chagui appear to be useful in controlling the training status of the kick and in orienting the training goal of black belt competitors.  相似文献   

3.
The roundhouse kick is a powerful attack in Taekwondo. Most athletes intently perform this kick for scoring in competition. Therefore, kinematic and kinetic analyzes of this kick were the topics of interest; however, they were separately investigated and rarely recorded for impact force. Our objectives were to investigate knee and ankle joint kinematics and electromyographic (EMG) activity of leg muscle and compare them between high-impact (HI) and low-impact (LO) kicks. Sixteen male black-belt Taekwondo athletes performed five roundhouse kicks at their maximal effort. Electrogoniometer sensors measured angular motions of ankle and knee joints. Surface EMG activities were recorded for tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris muscles. Based on maximal impact forces, the athletes were classified into HI and LO groups. All athletes in both groups showed greater activation of rectus femoris than other muscles. The HI group only showed significantly less plantarflexion angles than the LO group during preimpact and impact phases (P < 0.05). During the impact phase, the HI group demonstrated significantly greater biceps femoris activation than the LO group (P < 0.05). In conclusion, rectus femoris activation could predominantly contribute to the powerful roundhouse kicks. Moreover, high biceps femoris co-activation and optimal angle of ankle plantarflexion of about 35° could help achieve the high impact force.  相似文献   

4.
The increased number of women participating in sports has led to a higher knee injury rate in women compared with men. Among these injuries, those occurring to the ACL are commonly observed during landing maneuvers. The purpose of this study was to determine gender differences in landing strategies during unilateral and bilateral landings. Sixteen male and 17 female recreational athletes were recruited to perform unilateral and bilateral landings from a raised platform, scaled to match their individual jumping abilities. Three-dimensional kinematics and kinetics of the dominant leg were calculated during the landing phase and reported as initial ground contact angle, ranges of motion (ROM) and peak moments. Lower extremity energy absorption was also calculated for the duration of the landing phase. Results showed that gender differences were only observed in sagittal plane hip and knee ROM, potentially due to the use of a relative drop height versus the commonly used absolute drop height. Unilateral landings were characterized by significant differences in hip and knee kinematics that have been linked to increased injury risk and would best be classified as "stiff" landings. The ankle musculature was used more for impact absorption during unilateral landing, which required increased joint extension at touchdown and may increase injury risk during an unbalanced landing. In addition, there was only an 11% increase in total energy absorption during unilateral landings, suggesting that there was a substantial amount of passive energy transfer during unilateral landings.  相似文献   

5.

Background

Sit-to-stand movements are a necessary part of daily life, and excessive mechanical stress on the articular cartilage has been reported to encourage the progression of osteoarthritis. Although a change in hip joint angle at seat-off may affect hip joint contact force during a sit-to-stand movement, the effect is unclear. This study aimed to examine the effect of the hip joint angle at seat-off on the hip joint contact force during a sit-to-stand movement by using a computer simulation.

Methods

A musculoskeletal model was created for the computer simulation, and eight muscles were attached to each lower limb. Various sit-to-stand movements were generated using parameters (e.g., seat height and time from seat-off to standing posture) reported by previous studies. The hip joint contact force for each sit-to-stand movement was calculated. Furthermore, the effect of the hip joint angle at seat-off on the hip joint contact force during the sit-to-stand movement was examined. In this study, as the changes to the musculoskeletal model parameters affect the hip joint contact force, a sensitivity analysis was conducted.

Results and conclusions

The hip joint contact force during the sit-to-stand movement increased approximately linearly as the hip flexion angle at the seat-off increased. Moreover, the normal sit-to-stand movement and the sit-to-stand movement yielding a minimum hip joint contact force were approximately equivalent. The effect of the changes to the musculoskeletal model parameters on the main findings of this study was minimal. Thus, the main findings are robust and may help prevent the progression of hip osteoarthritis by decreasing mechanical stress, which will be explored in future studies.
  相似文献   

6.
Ultrasound imaging (USI) of muscle thickness offers different insights into musculoskeletal function than kinematics, kinetics, and surface electromyography (sEMG), however it is unknown how USI-derived measures correlate to traditional measures during walking. The purpose of this study was to compare USI-derived gluteus maximus (GMAX) and medius (GMED) thickness measures to tri-planar hip kinematics and kinetics, and GMED thickness to sEMG amplitude. Fourteen females walked on a treadmill at 1.34 m/s. GMAX and GMED thickness, hip tri-planar kinematics, kinetics, and GMED sEMG were simultaneously recorded. USI-derived thickness measures were compared to other biomechanical outcomes using cross-correlation analyses, computed at each 1% (11-ms) of the gait cycle with lag times from −20% to 20%. GMED and GMAX thickness measures were most strongly correlated with hip extension and abduction angles at 150–220-ms lags (cross-correlation coefficients [CCF]: −0.34; −0.83). GMED thickness was most correlated to abduction and external rotation moments simultaneously (CCF: −0.28; −0.47). GMAX thickness and flexion moments were most strongly correlated at a 66-ms lag (CCF: 0.33). GMED sEMG amplitude was most strongly correlated to muscle thickness at a 99-ms lag (CCF: 0.39). These results elucidate the unique information provided from USI-derived measures of gluteal muscle thickness during walking.  相似文献   

7.
Fetal kicking and movements generate biomechanical stimulation in the fetal skeleton, which is important for prenatal musculoskeletal development, particularly joint shape. Developmental dysplasia of the hip (DDH) is the most common joint shape abnormality at birth, with many risk factors for the condition being associated with restricted fetal movement. In this study, we investigate the biomechanics of fetal movements in such situations, namely fetal breech position, oligohydramnios and primiparity (firstborn pregnancy). We also investigate twin pregnancies, which are not at greater risk of DDH incidence, despite the more restricted intra-uterine environment. We track fetal movements for each of these situations using cine-MRI technology, quantify the kick and muscle forces, and characterise the resulting stress and strain in the hip joint, testing the hypothesis that altered biomechanical stimuli may explain the link between certain intra-uterine conditions and risk of DDH. Kick force, stress and strain were found to be significantly lower in cases of breech position and oligohydramnios. Similarly, firstborn fetuses were found to generate significantly lower kick forces than non-firstborns. Interestingly, no significant difference was observed in twins compared to singletons. This research represents the first evidence of a link between the biomechanics of fetal movements and the risk of DDH, potentially informing the development of future preventative measures and enhanced diagnosis. Our results emphasise the importance of ultrasound screening for breech position and oligohydramnios, particularly later in pregnancy, and suggest that earlier intervention to correct breech position through external cephalic version could reduce the risk of hip dysplasia.  相似文献   

8.
In the optimisation of sports movements using computer simulation models, the joint actuators must be constrained in order to obtain realistic results. In models of a gymnast, the main constraint used in previous studies was maximum voluntary active joint torque. In the stalder, gymnasts reach their maximal hip flexion under the bar. The purpose of this study was to introduce a model of passive torque to assess the effect of the gymnast's flexibility on the technique of the straddled stalder. A three-dimensional kinematics driven simulation model was developed. The kinematics of the shoulder flexion, hip flexion and hip abduction were optimised to minimise torques for four hip flexion flexibilities: 100°, 110°, 120° and 130°. With decreased flexibility, the piked posture period is shorter and occurs later. Moreover the peaks of shoulder and hip torques increase. Gymnasts with low hip flexibility need to be stronger to achieve a stalder; hip flexibility should be considered by coaches before teaching this skill.  相似文献   

9.
The purpose of this study was to examine the effects of static and dynamic stretching within a pre-exercise warm-up on hip dynamic range of motion (DROM) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 professional adult male soccer players (height: 180.38 ± 7.34 cm; mass: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 3-dimensional digital video cameras at 50 Hz. Hip DROM at backward, forward, and follow-through phases (instep kick phases) after different warm-up protocols consisting of static, dynamic, and no-stretching on 3 nonconsecutive test days were captured for analysis. During the backswing phase, there was no difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method. There was a significant difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method during (a) the forward phase with p < 0.03, (b) the follow-through phase with p < 0.01, and (c) all phases with p < 0.01. We concluded that professional soccer players can perform a higher DROM of the hip joint during the instep kick after dynamic stretching incorporated in warm-ups, hence increasing the chances of scoring and injury prevention during soccer games.  相似文献   

10.
Blocking technology is one of the most important means to obtain score in volleyball, which has a great influence on the victory of the game. In this study, the vertical jump was analyzed to understand the movement characteristics of legs during training time. The kinematics and dynamics data of the legs of 10 volleyball players after training for 0 h, 0.5 h, 1 h and 2 h were studied by using an infrared light point motion capture system and force measuring platform. The results showed that the joint angles of the players who had 1 h and 2 h of training in the buffering and pedaling and stretching stages decreased markedly compared with those who had 0 h of training. The peak angular velocity and impulse of hip and knee joints after 1 h and 2 h of training decreased in the pedaling and stretching stage. In the flight stage, the time of flight and the height of center of gravity showed a downward trend, while the time of landing and the angle of the knee joint decreased. After 1 h and 2 h of training, at the moment of double-foot landing, the flexion and extension angle of the knee joint increased, and the angular velocity of the knee joint and ankle joint decreased markedly. The length of training time has a great impact on the joints of legs, including increasing joint pressure and the risk of injuries.  相似文献   

11.
In the Olympic sport of Taekwondo (TKD), elastic resistance training (ERT) is often used with the aim of improving kicking performance; however, the efficacy of this has never been examined experimentally. The purpose of this study was to investigate the effect of a TKD-specific, progressive ERT protocol on the velocity of the TKD turning kick. Twelve TKD athletes were randomly allocated to receive either a 4-week intervention of ERT plus usual TKD training (n = 6) or to a control group receiving 4 weeks of usual TKD training only. Kicking velocity from initiation to impact on a target was measured pre- and postintervention using a digital timer and two pressure switches. Kicking velocity improved significantly (by 7%) in the ERT group, whereas there was no improvement in the control group (p < 0.05). These data suggest that ERT is a feasible means of sport-specific resistance training for TKD and that TKD performance could benefit from an improved velocity of the attacking turning kick.  相似文献   

12.
Individuals with chronic ankle instability (CAI) demonstrate altered ankle kinematics during landing compared to uninjured individuals. However, if copers may have adopted unique movement strategy to prevent repeated ankle sprains is unclear. The purpose of this study compares the lower-extremity joint kinematics and muscle activities of CAI (N = 8), coper (COP) (N = 8), and control (CON) (N = 8) groups in unexpected single-leg landing and cutting. Performance time (from initial contact to toe-off), number of mistakes in the jumping direction, low-extremity joint angle are assessed. Muscle activities were recorded from the tibialis anterior, medial gastrocnemius, and peroneus longus (PL), and mean muscle activity, co-contraction index (CI), and PL latency were analyzed. Results of performance time and CI are not significant. Significantly less number of mistakes in the jumping direction and a shorter PL latency were discovered in the COP and CON compared with the CAI group (P < 0.05). The peak hip joint flexion angle is significantly smaller in the COP than in the CON (P = 0.04). In dynamic tasks requiring quick judgments of ankle inclination, the COP may be able to accurately sense the inclination of the foot. Additionally, movement strategies differed between the COP and CON groups in an unexpected single-leg landing and cutting.  相似文献   

13.
The take-off phase (approximately 6 m) of the jumps of all athletes participating in the individual HS-106 m hill ski jumping competition at the Torino Olympics was filmed with two high-speed cameras. The high altitude of the Pragelato ski jumping venue (1600 m) and slight tail wind in the final jumping round were expected to affect the results of this competition. The most significant correlation with the length of the jump was found in the in-run velocity (r=0.628, p<0.001, n=50). This was a surprise in Olympic level ski jumping, and suggests that good jumpers simply had smaller friction between their skis and the in-run tracks and/or the aerodynamic quality of their in-run position was better. Angular velocity of the hip joint of the best jumpers was also correlated with jumping distance (r=0.651, p<0.05, n=10). The best jumpers in this competition exhibited very different take-off techniques, but still they jumped approximately the same distance. This certainly improves the interests in ski jumping among athletes and spectators. The comparison between the take-off techniques of the best jumpers showed that even though the more marked upper body movement creates higher air resistance, it does not necessarily result in shorter jumping distance if the exposure time to high air resistance is not too long. A comparison between the first and second round jumps of the same jumpers showed that the final results in this competition were at least partly affected by the wind conditions.  相似文献   

14.
Musculoskeletal modeling and simulations have vast potential in clinical and research fields, but face various challenges in representing the complexities of the human body. Soft tissue artifact from skin-mounted markers may lead to non-physiological representation of joint motions being used as inputs to models in simulations. To address this, we have developed adaptive joint constraints on five of the six degree of freedom of the knee joint based on in vivo tibiofemoral joint motions recorded during walking, hopping and cutting motions from subjects instrumented with intra-cortical pins inserted into their tibia and femur. The constraint boundaries vary as a function of knee flexion angle and were tested on four whole-body models including four to six knee degrees of freedom. A musculoskeletal model developed in OpenSim simulation software was constrained to these in vivo boundaries during level gait and inverse kinematics and dynamics were then resolved. Statistical parametric mapping indicated significant differences (p < 0.05) in kinematics between bone pin constrained and unconstrained model conditions, notably in knee translations, while hip and ankle flexion/extension angles were also affected, indicating the error at the knee propagates to surrounding joints. These changes to hip, knee, and ankle kinematics led to measurable changes in hip and knee transverse plane moments, and knee frontal plane moments and forces. Since knee flexion angle can be validly represented using skin mounted markers, our tool uses this reliable measure to guide the five other degrees of freedom at the knee and provide a more valid representation of the kinematics for these degrees of freedom.  相似文献   

15.
目的:探讨手术时机的选择对股骨颈骨折患者行关节置换术后髋关节功能的影响,为临床骨科手术提供参考。方法:回顾性 分析117 例在我院接受关节置换术的股骨颈骨折患者的临床资料。根据手术时机不同,将患者分为急诊组和择期组,比较两组手 术效果,评价患者术后髋关节功能。结果:急诊组患者的手术时间、术中出血量及住院时间均优于择期手术的患者,差异有统计学 意义(P<0.01);两组患者术后并发症的发生率无显著差异(P>0.05);术后1 个月,急诊组患者的Harris 评分高于择期组,差异有统 计学意义(P<0.01);术后3 个月,两组Harris评分无统计学差异(P>0.05)。结论:股骨颈骨折患者行急诊手术不但缩短手术时间、 降低术中出血量,而且术后对患者的髋关节功能影响较小,有利于恢复。  相似文献   

16.
High-speed videography was used to describe the initial turning movement of visually triggered escape in frogs and to compare it with the initial turn of frog prey capture behavior. These two types of turning had some general similarities, e.g. turn duration and peak velocity were positively correlated with turn angle. However, there were kinematic differences: for turns of a given angular amplitude, escape turns consistently demonstrated shorter duration and higher peak velocity than prey capture turns. There also were differences predictably matched to stimulus angles; escape turn angles were more variably related to stimulus angles. Both turning movements are believed to depend upon the optic tectum. However, given the observed differences in kinematics and spatial organization, we used lesion experiments to determine if distinct tectal efferent pathways subserve turning under each circumstance. Large unilateral lesions of the brainstem simultaneously disrupted both types of turning. However, smaller laterally placed lesions disrupted escape turning without disrupting prey capture turns. The kinematic differences in combination with the lesion results support the idea that the post-tectal circuitry for visually elicited turning movements is based upon separate descending pathways that control turning toward prey and turning away from threat.Abbreviations CG central gray - OT optic tectum - SEM standard error of the mean  相似文献   

17.
Lack of the necessary magnitude of energy dissipation by lower extremity joint muscles may be implicated in elevated impact stresses present during landing from greater heights. These increased stresses are experienced by supporting tissues like cartilage, ligaments and bones, thus aggravating injury risk. This study sought to investigate frontal plane kinematics, kinetics and energetics of lower extremity joints during landing from different heights. Eighteen male recreational athletes were instructed to perform drop-landing tasks from 0.3- to 0.6-m heights. Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. Joint moment was calculated using inverse dynamics. Joint power was computed as a product of joint moment and angular velocity. Work was defined as joint power integrated over time. Hip and knee joints delivered significantly greater joint power and eccentric work (p<0.05) than the ankle joint at both landing heights. Substantial increase (p<0.05) in eccentric work was noted at the hip joint in response to increasing landing height. Knee and hip joints acted as key contributors to total energy dissipation in the frontal plane with increase in peak ground reaction force (GRF). The hip joint was the top contributor to energy absorption, which indicated a hip-dominant strategy in the frontal plane in response to peak GRF during landing. Future studies should investigate joint motions that can maximize energy dissipation or reduce the need for energy dissipation in the frontal plane at the various joints, and to evaluate their effects on the attenuation of lower extremity injury risk during landing.  相似文献   

18.
This study aimed at investigating two aspects of neuromuscular control around the hip and knee joint while executing the roundhouse kick (RK) using two techniques: Impact RK (IRK) at trunk level and No-Impact RK at face level (NIRK). The influence of technical skill level was also investigated by comparing two groups: elite Karateka and Amateurs. Surface electromyographic (sEMG) signals have been recorded from the Vastus Lateralis (VL), Biceps Femoris (BF), Rectus Femoris (RF), Gluteus Maximum (GM) and Gastrocnemious (GA) muscles of the kicking leg in six Karateka and six Amateurs performing the RKs. Hip and knee kinematics were also assessed. EMG data were rectified, filtered and normalized to the maximal value obtained for each muscle over all trials; co-activation (CI) indexes of antagonist vs. overall (agonist and antagonist) activity were computed for hip and knee flexion and extension. Muscle Fiber Conduction Velocity (CV) obtained from VL and BF muscles was assessed as well. The effect of group and kick on angular velocity, CIs, and CVs was tested through a two-way ANOVA (p < 0.05). An effect of group was showed in both kicks. Karateka presented higher knee and hip angular velocity; higher BF-CV (IRK: 5.1 ± 1.0 vs. 3.5 ± 0.5 m/s; NIRK: 5.7 ± 1.3 vs. 4.1 ± 0.5 m/s), higher CIs for hip movements and knee flexion and lower CI for knee extension. The results obtained suggest the presence of a skill-dependent activation strategy in the execution of the two kicks. CV results are suggestive of an improved ability of elite Karateka to recruit fast MUs as a part of training induced neuromuscular adaptation.  相似文献   

19.
This case study evaluated the importance of peak bar velocity and starting posture adopted by a novice weightlifter to the outcome of a Snatch lift. Multiple observations of both successful and unsuccessful attempts were captured using 3D motion analysis (VICON MX: 500 Hz). The following data analysis was then used to derive feedback. In total, 133 attempts of loads ranging from 75 to 100% of 1 repetition maximum (1RM) were performed by the subject (age = 25 years, stature = 171 cm, mass = 74.8 kg, Snatch 1RM = 80 kg). Variables included peak bar velocity, pelvis, hip, knee and ankle joint angles at the starting position for the right side and the difference between (left minus right) sides. No main effects for load, success, or their interactions were found for peak bar velocity. Starting position kinematics were mostly nonsignificant between the outcome of Snatch attempts. Right ankle joint angle was the only exception, where unsuccessful attempts displayed greater (p = 0.0228) dorsiflexion. A more comprehensive finding was achieved through the partition modeling; this analysis provided valuable insight and coaching feedback for the subject in relation to his lower body kinematics at the starting position. Furthermore, the accuracy of this feedback was verified using a holdback data set. Specifically, anterior pelvic tilt (>17.6°) and hip joint (<89.6°) angle were identified as the key features to increasing the likelihood of success. In conclusion, this case study outlines a method of data collection and analysis to assist coaching feedback for an individual.  相似文献   

20.
In research regarding postural stability, leg preference is often tested and controlled for. However, leg preference may vary between tasks. As athletes are a group of interest for postural stability testing, we evaluated the effect of five leg preference tasks categorization (step up, hop, ball kick, balance, pick up) on single-leg postural stability of 16 field hockey athletes. The ‘center of pressure speed’ was calculated as the primary outcome variable of single-leg postural stability. Secondary variables were ‘mean length of the GRF vector in the horizontal plane’, ‘mean length of the ankle angular velocity vector’, and ‘mean length of the hip angular velocity vector’, as well as the separate outcomes per degree of freedom. Results showed that leg preference was inconsistent between leg preference tasks. Moreover, the primary and secondary variables yielded no significant difference between the preferred and non-preferred legs, regardless of the applied leg preference task categorization (p>0.05). The present findings do not support the usability of leg preference tasks in controlling for bias of postural stability. In conclusion, none of the applied leg preference tasks revealed a significant effect on postural stability in healthy field hockey athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号