首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wood density and vessel characteristics are functionally interrelated, yet they may have distinct ecological associations. In a comparative study of 51 angiosperm species ranging from chaparral shrubs to riparian trees, we examined relationships among wood density and vessel traits and their ecological correlates. Mean vessel lumen area and vessel density (number mm(-2)) varied widely (7- to 10-fold). In multivariate analyses, both vessel traits were negatively correlated with wood density, which varied more narrowly (< 2-fold). Vessel density and lumen area were inversely related across species, allowing a broad range of vessel traits within a narrow range of wood density. Phylogenetic independent contrasts indicated correlated inverse evolutionary change in vessel traits. Each trait had a distinct pattern of ecological correlation -- wood density was most strongly associated with soil water, and vessel traits showed contrasting relationships with plant height. Within a narrow range of wood density, there was significant variation in vessel traits. Given their particular ecological associations, the results suggest that wood density and vessel traits describe two distinct ecological axes.  相似文献   

2.
We attempted to observe differences in vessel element anatomy, and physiological and morphological traits of leaves in Fagus crenata seedlings originated from seven different provenances grown under the uniform environmental conditions. We also investigated the relationships between the anatomical characteristics of the vessel elements and physiological plus morphological traits of leaves in Fagus crenata seedlings. To carry out the experiments, Fagus crenata samples were prepared from Chichibu Research Forest of Tokyo University. For anatomical studies of the vessel elements, vessel number per mm2, average vessel area, and the percentage of vessel area from the pith to the bark side were measured. We also measured transpiration rate, stomatal conductance, leaf area, leaf thickness, leaf dry mass per unit leaf area and leaf density for foliar studies. The anatomical characteristics of the vessel elements as well as the physiological and morphological traits of leaves were noticeably different among provenances. In addition, we found significant correlations between the foliar characteristics not only with vessel number per mm2, but also with vessel area percentage and sum of the (vessel area)2, theoretical hydraulic conductivity, from the pith to the bark side. Therefore, we concluded that variations in physiological and morphological traits of leaves in response to provenance variation were in correspondence with vessel number per mm2 as a parameter that determines the total vessel area and consequent water hydraulic conductance in Fagus crenata as a diffuse porous hardwood.  相似文献   

3.
The response of plant species to varying climate conditions in tropical Africa remains poorly understood but can be assessed using wood anatomical traits. These traits play an important role for the adaptive capacity of a species to environmental stress, since environmental conditions can modify the proportion, size, and morphology of wood anatomical elements. This study reports quantitative data on vessel characteristics of the diffuse porous angiosperm Spiny monkey orange (Strychnos spinosa Lam.) in Benin in tropical West Africa. The vessel-related anatomical traits varied with high amplitude (coefficient of variation CV ˃ 25%) between different sites located in different climate zones. The variability of the traits is higher within one climatic zone than between climatic zones, and even more pronounced within trees. Consequently, the climatic zones have less influence on the studied features than local site conditions. However, the study showed that S. spinosa individuals that have numerous vessels also have a high lumen fraction and total ring area. On the other hand, individuals presenting a high vessel density also display vessels of smaller size. The correlation between vessel number and total ring area on the one hand, and between vessel size and lumen fraction on the other hand are highly significant and positive. In Benin, S. spinosa wood anatomical traits are likely linked to local site factors rather than to regional climatic factors.  相似文献   

4.
Current theory presumes that natural selection on vascular traits is controlled by a trade‐off between efficiency and safety of hydraulic architecture. Hence, traits linked to efficiency, such as vessel diameter, should show biogeographic patterns; but critical tests of these predictions are rare, largely owing to confounding effects of environment, tree size and phylogeny. Using wood sampled from a phylogenetically constrained set of 28 Eucalyptus species, collected from a wide gradient of aridity across Australia, we show that hydraulic architecture reflects adaptive radiation of this genus in response to variation in climate. With increasing aridity, vessel diameters narrow, their frequency increases with a distribution that becomes gradually positively skewed and sapwood density increases while the theoretical hydraulic conductivity declines. Differences in these hydraulic traits appear largely genotypic in origin rather than environmentally plastic. Data reported here reflect long‐term adaptation of hydraulic architecture to water availability. Rapidly changing climates, on the other hand, present significant challenges to the ability of eucalypts to adapt their vasculature.  相似文献   

5.
细根作为植物与土壤连接的重要部位,能够反映植物对生存环境的适应性。以黄河三角洲滨海盐碱地不同立地条件下11个造林树种为对象,基于细根分支等级划分1-4级根序并进行解剖特征测定,分析细根解剖性状对滨海盐碱地不同土壤条件的响应规律。结果表明:(1)不同根序的细根直径存在显著差异,细根直径随根序升高呈增大趋势,而同根序的细根直径在不同树种间表现出显著的种间差异(P < 0.05)。1-2级细根皮层厚度、3-4级细根导管密度在树种间的差异均达显著水平(P < 0.05)。(2)在较为严重盐渍化土壤条件下(立地1),细根皮层厚度较其他立地显著增大,但细根导管密度较小;在轻度盐碱立地条件下(立地3),细根导管密度较大;较为严重的盐碱立地具有更为发达的细根直径及维管柱直径。(3)树种1-2级细根解剖结构与土壤环境关系最为密切,其中1级根直径与土壤pH值显著正相关(P < 0.05),与土壤硝态氮含量呈显著负相关(P < 0.05)。对土壤理化性质与细根解剖性状的冗余分析表明,前两个轴的特征值达0.640和0.196,土壤速效养分含量与轴一(RDA1)呈正相关,低级根解剖性状则与轴二(RDA2)呈显著负相关。低级根解剖结构以及土壤的pH值能解释较多树种的差异性,其中低级根直径与皮层厚度对盐碱环境表现出较强的响应。  相似文献   

6.
Xylem traits were examined among 22 arid-land shrub species, including measures of vessel dimensions and pit area. These structural measures were compared with the xylem functional traits of transport efficiency and safety from cavitation. The influence of evolution on trait relationships was examined using phylogenetic independent contrasts (PICs). A trade-off between xylem safety and efficiency was supported by a negative correlation between vessel dimensions and cavitation resistance. Pit area was correlated with cavitation resistance when cross species data were examined, but PICs suggest that these traits have evolved independently of one another. Differences in cavitation resistance that are not explained by pit area may be related to differences in pit membrane properties or the prevalence of tracheids, the latter of which may alter pit area through the addition of vessel-to-tracheid pits or through changes in xylem conduit connectivity. Some trait relationships were robust regardless of species ecology or evolutionary history. These trait relationships are likely to be the most valuable in predictive models that seek to examine anatomical and functional trait relationships among extant and fossil woods and include the relationship among hydraulic conductivity and vessel diameter, between vessel diameter and vessel length, and between hydraulic conductivity and wood density.  相似文献   

7.
Background and AimsAlthough the plant economic spectrum seeks to explain resource allocation strategies, carbohydrate storage is often omitted. Belowground storage organs are the centre of herb perennation, yet little is known about the role of their turnover, anatomy and carbohydrate storage in relation to the aboveground economic spectrum.MethodsWe collected aboveground traits associated with the economic spectrum, storage organ turnover traits, storage organ inner structure traits and storage carbohydrate concentrations for ~80 temperate meadow species.Key ResultsThe suites of belowground traits were largely independent of one another, but there was significant correlation of the aboveground traits with both inner structure and storage carbohydrates. Anatomical traits diverged according to leaf nitrogen concentration on the one hand and vessel area and dry matter content on the other; carbohydrates separated along gradients of leaf nitrogen concentration and plant height.ConclusionsContrary to our expectations, aboveground traits and not storage organ turnover were correlated with anatomy and storage carbohydrates. Belowground traits associated with the aboveground economic spectrum also did not fall clearly within the fast–slow economic continuum, thus indicating the presence of a more complicated economic space. Our study implies that the generally overlooked role of storage within the plant economic spectrum represents an important dimension of plant strategy.  相似文献   

8.
干旱半干旱区植物的木质部输水系统对维持植物生长发育有重要作用。以中国干旱半干旱区的草本植物为研究对象,旨在探究草本物种根系导管解剖结构与植物生长之间的关系。用石蜡切片法,将在锡林浩特草原采集的草本物种的主根样品制作成切片,得到固定面积内导管解剖结构参量(导管数量、导管分数、平均导管面积、平均水力传导率和水力直径),然后用逐步回归法和Pearson相关分析各导管解剖性状与植物生长特征(年龄、生长速率和平均高度)之间的关系。结果发现(1)生长速率与导管数量(R=-0.494,P<0.01)和导管分数(R=-0.255,P<0.05)显著负相关,与平均导管面积(R=0.274,P<0.05)、平均水力传导率(R=0.263,P<0.05)和水力直径(R=0.245,P<0.05)显著正相关,表明生长快的草本具有大而少的导管,需要较高的水分传输能力,而生长慢的草本具有小而多的导管,水力安全性较高;(2)植株的高度与导管数量(R=-0.354,P<0.01)显著负相关,与平均导管面积(R=0.293,P<0.05)、平均水力传导率(R=0.289,P&l...  相似文献   

9.
Riparian ecotones in the fynbos biome of South Africa are heavily invaded by woody invasive alien species, which are known to reduce water supply to downstream environments. To explore whether variation in species-specific functional traits pertaining to drought-tolerance exist, we investigated wood anatomical traits of key native riparian species and the invasive Acacia mearnsii across different water availability proxies. Wood density, vessel resistance against implosion, vessel lumen diameter and vessel wall thickness were measured. Wood density varied significantly between species, with A. mearnsii having denser wood at sites in rivers with high discharge. As higher wood density is indicative of increased drought tolerance and typical of drier sites, this counter-intuitive finding suggests that increased wood density was more closely related to midday water stress, than streamflow quantity per se. Wood density was positively correlated with vessel resistance against implosion. Higher wood density may also be evidence that A. mearnsii is more resistant against drought-induced cavitation than the studied native species. The observed plastic response of A. mearnsii anatomical traits to variable water availability indicates the ability of this species to persist under various environmental conditions. A possible non-causal relationship between wood anatomy and drought tolerance in these riparian systems is discussed.  相似文献   

10.
Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species’ hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.  相似文献   

11.
We measured radial variation of carbon isotope composition and vessel traits in tree species in seasonally dry forests of Northeast Thailand to explore a more reliable and amenable method of tropical dendrochronology for trees that lack visually detectable and consistent growth rings. Six Dipterocarpaceae species (3 Shorea, 2 Dipterocarpus, and 1 Hopea species) with indistinct or irregular growth rings and teak (Tectona grandis), a species which forms distinct growth rings, were examined. The δ13C value variations in all species showed annual cyclicity. Dipterocarpaceae species usually marked the lowest values of δ13C in the middle of the growing season, whereas teak had the lowest values at nearly the end of the growing season. Since the growing season of the species examined almost corresponds to the rainy season in the study area, the δ13C variation was likely caused by the change in moisture availability. The different variation pattern of teak was attributable to its stronger dependence on 13C-enriched reserved material early in the growing season. Changes in tree vessel traits for all species examined also showed annual cyclicity. Dipterocarpaceae species showed significant correlation between δ13C values and vessel measurements. Vessel lumen (mean area, tangential and radial diameter, and proportion of total area) had a negative correlation, whereas vessel frequency showed a positive correlation. The correlations indicated that changes in vessel traits were caused by the seasonal variation of moisture available to the trees. Thus, we concluded that methods using wood anatomy, as well as δ13C, have great potential for use as tools in tropical dendrochronology within the context of seasonal climate.  相似文献   

12.
Tropical West African savannas are exposed to high climatic variability with potential impacts on tree growth, forest dynamics and ecosystem productivity. In such context, understanding the long-term ecological responses of savanna trees to changing environmental conditions is of great relevance for taking appropriate conservation actions. We conducted the first study on tree-ring analysis and quantitative wood anatomy on Afzelia africana Sm. in Burkina Faso, to investigate the life-span growth trajectories and wood anatomical adjustment to site and to climate variations. A total of 24 stem discs was collected in four protected forests along the Sudano-sahelian and the Sudanian climatic zones. Wood samples were analyzed using standard dendrochronological methods and quantitative wood anatomy. The mean annual growth rates varied from 1.002 (± 0.249) mm. year−1 in the Sudanian zone to 1.128 (± 0.436) mm. year−1 in the Sudano-sahelian zone. Analysis of growth trajectories showed high variations within sites and between climatic zones. Wood anatomical traits significantly varied between sites. Principal Component Analysis revealed strong relationships between ring width, wood density and vessel traits, with 82.81 % of the total variance explained. Vessel size significantly increased from the pith to the bark, highlighting the ontogenetic effects on xylem anatomical variations. Inverse relationships were found between vessel size and vessel density across the driest site and the wettest site, suggesting that the higher the rainfall, the taller the tree, the larger vessel size, but the lower vessel density. By contrast, more arid conditions and high evapotranspiration lead to smaller vessel sizes and higher vessel density. Such anatomical adjustments highlight the trade-offs between water conductance efficiency and hydraulic safety, and emphasize physiological responses to climate variability. These variations on the long-term dynamics and xylem anatomical patterns underline complex interactions between ontogenetic effects and contrasting environmental factors that affect the eco-physiological functioning of A. africana throughout the Sudanian region.  相似文献   

13.
为比较干旱荒漠区城市绿化灌木和荒漠乡土灌木在夏季热浪期的受损差异和其对高温和热浪冲击响应机理的不同,在新疆北疆2022年夏季热浪期末期,测定了9种荒漠乡土灌木和8种城市绿化灌木的4种水分相关功能性状(水力、叶片、光合和碳经济性状),同时调查植株受损程度。调查结果表明,荒漠乡土灌木接近74%的个体在夏季热浪中未受损伤,但有56%的城市绿化灌木个体受损;水力和叶片性状方面,荒漠灌木的枝叶水势、干物质含量和导管直径的平均值低于城市绿化植物,而枝比导率、准稳态导水率、胡伯尔值、比叶面积、导管密度呈相反态势。在碳经济和光合性状方面,荒漠乡土灌木的可溶性碳含量和水分利用效率高于城市绿化灌木(P<0.05),但气孔导度成相反模式(P <0.05),而淀粉和结构性碳含量、蒸腾速率无显著差异(P>0.05);荒漠乡土灌木的性状整合度(G=0.39)高于城市绿化植物(G=0.20),且前者的关键节点个数,以及其与其他性状显著关联的个数均高于后者。结果表明,2022年夏季热浪引起荒漠乡土灌木的受损程度低于城市绿化灌木;荒漠植物在水力性状和性状整合方面存在优势,其水分吸收、运输和减少蒸腾失水的能力要强于城市绿化灌木,热浪影响下更易存活;相对城市绿化灌木,荒漠灌木可以协调功能性状间的关系,采取更多样化的适应机理将降低夏季热浪的负面影响。本研究可为干旱地区城市绿化灌木筛选以及区域生态保护政策制定提供科学参考。  相似文献   

14.
木质部的解剖结构特征对树木水分传输功能有重要的影响,阔叶树种木质部环孔和散孔结构特征的分化,很可能导致两个功能类群在水力学结构上存在显著差异,但是有关两个功能类群间细致的水力学性状的对比研究还较少,二者整枝水平的导水率及纹孔水平的细致结构差异尚未见报道.本试验以长白山阔叶红松林常见的3个环孔材和4个散孔材乔木树种为研究对象,对比了两个功能类群树种的整枝导水率(k_shoot)、枝条木质部栓塞脆弱性(p_50)等重要水力学相关生理功能特征,并分析了两个功能类群间的木质部组织水平和纹孔水平上的解剖结构特征差异.结果表明:与茎段导水率差异一致,环孔材树种的整枝导水率也显著高于散孔材,但枝条木质部气穴化抵抗力显著弱于散孔材,二者的差异反映了整枝水平上木质部导水效率和安全性之间的权衡关系,与两个功能类群的水力学生理特征存在显著差异一致,二者在最大导管长度、导管直径、纹孔开口面积、纹孔开口比例等光学和扫描电镜观测解剖结构特征上都存在显著差异;木质部解剖特征(组织水平、纹孔水平)和k_shoot、p_50等生理特征间,以及木质部不同解剖特征之间存在显著的相关,且两个功能类群遵循相同的规律,反映了木质部结构对水分传输功能的重要影响,而导水率和气穴化抵抗力对木质部对立的结构要求,体现了树木水分传输系统构建的生物物理局限性.  相似文献   

15.
Concerning forest communities, not much is known about the relationship between wood traits and environmental conditions. Using a succession series, we analyzed which wood anatomical traits were correlated with successional stage and asked which traits and which environmental factors were particularly important for the trait–environment relationship. An extensive dataset of 11 groups of wood traits was generated for 93 woody species that occurred in 27 permanent plots in a secondary subtropical secondary broadleaved forest in Zhejiang Province (SE-China) and subjected to Fourth Corner Analyses, using different permutation models. We encountered a strong relationship of wood porosity, visibility of growth rings and vessel arrangement to the successional gradient. Compared to biotic community characteristics such as density of plants, abiotic environmental variables such as soil characteristics, aspect and inclination of the plots showed only marginal correlations to wood anatomical traits. Furthermore, the link between environment and species composition of the forest communities was found to be more important in explaining the trait–environment relationship than between the communities and species wood traits. In addition, our results support the idea that most of the species in the subtropical forest might be functionally equivalent.  相似文献   

16.
扁担木叶片和次生木质部解剖和水分生理特征的可塑性   总被引:3,自引:0,他引:3  
基于叶片和次生木质部解剖特征及水分生理指标观测,研究了淮北相山不同群落中扁担木的表型可塑性.结果表明,扁担木叶片结构表现出中生特点:叶为异面叶,较薄,角质层不甚发达,气孔密度较小.次生木质部表现出旱生特点:导管频率和复孔率较高,导管分子短而窄,纤维很短,射线很低.扁担木叶片、次生木质部的解剖和水分生理特征均表现出一定的可塑性,其可塑性指数高低顺序为次生木质部解剖特征(0.24)>水分生理特征(0.19)>叶片解剖特征(0.18).与侧柏林和混交林相比,灌丛中扁担木个体对干旱生境有一定的适应能力,表现在次生木质部导管分子短,导管频率高,单孔率低,木纤维短,射线矮小,具有较大的相对输导率和较小的脆性指数;叶片水势、组织含水量、自由水含量较低,叶面积、比叶面积较小,而束缚水含量、束缚水自由水比值较高.扁担木的解剖和生理可塑性,使之能忍受群落演替早期的干旱生境,更好地适应演替后期的中生环境,从而成为广布种和混交林中的优势种.  相似文献   

17.
Urban trees are sensitive to extreme weather events under climate change. Freeze-thaw induced hydraulic failure could induce urban tree dieback and nullify the services they provide. Plant height is a simple but significant trait for plant ecological strategies. Understanding how urban trees with different heights adapt to freeze-thaw stress is increasingly important under climate change. We investigated the relationship between tree height and stem hydraulic functional traits of six common urban tree species in North China to explore tree height-related hydraulic strategies to cope with freeze-thaw stress. Results showed that tall trees had wider vessels, higher hydraulic conductivity, more winter embolism, but lower vessel and wood densities. Positive relationships were found between tree height and vessel diameter, hydraulic conductivity, and freeze-thaw induced embolism, and negative relationships were found between tree height and vessel and wood densities, which implied that short trees employ more conservative ecological strategies than tall trees. Tall and short tree species were well separated by multiple stem hydraulic functional traits; this is consistent with the fact that tall and short trees occupy different niches and indicates that different hydraulic strategies for freeze-thaw stress exist between them. Tall trees might face more pressure to survive under extreme cold weather caused by climate change in the future. Therefore, more attention should be paid to tall urban tree management in North China to cope with extreme cold weather.  相似文献   

18.
Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conductivity was studied in relation to xylem anatomy, leaf- and sapwood-specific hydraulic conductivity and gas exchange characteristics of leaves. We found evidence that a trade-off between xylem transport capacity and safety from freeze-thaw-induced embolism affects photosynthetic activity in overwintering evergreens. The mean hydraulically weighted xylem vessel diameter and sapwood-specific conductivity correlated with susceptibility to freeze-thaw-induced embolism. There was also a strong correlation of hydraulic supply and demand across species; interspecific differences in stomatal conductance and CO(2) assimilation rates were correlated linearly with sapwood- and leaf-specific hydraulic conductivity. Xylem vessel anatomy mediated an apparent trade-off between resistance to freeze-thaw-induced embolism and hydraulic and photosynthetic capacity during the winter. These results point to a new role for xylem functional traits in determining the degree to which species can maintain photosynthetic carbon gain despite freezing events and cold winter temperatures.  相似文献   

19.
植物的根系具有水分吸收和运输的功能,部分还有重要的药用价值。该研究观察了40种药用草本植物粗根的解剖特征,比较了不同功能类群的差异性并分析了性状的相关性,同时结合系统发育和自然分布区气候因子解释了根系性状的种间变异性。结果表明,草本植物根系解剖特征种间差异显著;与双子叶植物相比,单子叶植物的根皮层占比更高,而中柱占比更小,揭示了两者根系吸收和运输策略的差异性。性状网络分析表明,木质部面积占比具有高的度和紧密度,是其中的中心性状,木质部面积占比与韧皮部面积占比正相关但与皮层占比负相关。除导管频度和皮层占比外,其他特征均未显示出显著的系统发育信号,说明根系性状受系统发育的影响较少。在单子叶草本植物中,年平均降水量与皮层占比呈正相关;而在双子叶草本中,年平均气温与导管直径正相关。该研究进一步揭示了药用草本植物根系结构的多样性和适应性。  相似文献   

20.
The apple tree is known to have an isohydric behaviour, maintaining rather constant leaf water potential in soil with low water status and/or under high evaporative demand. However, little is known on the xylem water transport from roots to leaves from the two perspectives of efficiency and safety, and on its genetic variability. We analysed 16 traits related to hydraulic efficiency and safety, and anatomical traits in apple stems, and the relationships between them. Most variables were found heritable, and we investigated the determinism underlying their genetic control through a quantitative trait loci (QTL) analysis on 90 genotypes from the same progeny. Principal component analysis (PCA) revealed that all traits related to efficiency, whether hydraulic conductivity, vessel number and area or wood area, were included in the first PC, whereas the second PC included the safety variables, thus confirming the absence of trade-off between these two sets of traits. Our results demonstrated that clustered variables were characterized by common genomic regions. Together with previous results on the same progeny, our study substantiated that hydraulic efficiency traits co-localized with traits identified for tree growth and fruit production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号