首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
How Can We Use Genomics to Improve Cereals with Rice as a Reference Genome?   总被引:7,自引:0,他引:7  
Rice serves as a model crop for cereal genomics. The availability of complete genome sequences, together with various genomic resources available for both rice and Arabidopsis, have revolutionized our understanding of the genetic make-up of crop plants. Both macrocolinearity revealed by comparative mapping and microcolinearity revealed by sequence comparisons among the grasses indicate that sequencing and functional analysis of the rice genome will have a significant impact on other cereals in terms of both genomic studies and crop improvement. The availability of mutants, introgression libraries, and advanced transformation techniques make functional genomics in rice and other cereals more manageable than ever before. A wide array of genetic markers, including anchor markers for comparative mapping, SSRs and SNPs are widely used in genetic mapping, germplasm evaluation and marker assisted selection. An integrated database that combines genome information for rice and other cereals is key to the effective utilization of all genomics resources for cereal improvement. To maximize the potential of genomics for plant breeding, experiments must be further miniaturized and costs must be reduced. Many techniques, including targeted gene disruption or allele substitution, insertional mutagenesis, RNA interference and homologous recombination, need to be refined before they can be widely used in functional genomic analysis and plant breeding.  相似文献   

3.
The techniques of molecular biology will become a standard part of germplasm conservation and exploitation. They are being used to gather information very rapidly about chromosome structure and genetic variation within the major crop species. Genetic maps with hundreds of DNA sequence markers covering the whole genome have already been created for some crops, such as maize, soybean, wheat and potato. Genetic variation is being revealed by the combined use of restriction endonucleases, fractionation of DNA fragments by electrophoresis and investigation of the size of specific allelic fragments. This kind of approach offers new opportunities to assess the extent of genetic variation among accessions in germplasm collections, thereby helping to decide which accessions are essentially duplicates and which should be maintained in a core collection. I recommend that germplasm banks will in the future also contain diagnostic DNA markers for characterizing and screening germplasm.
When material from germplasm banks is used in crop plant breeding programmes to transfer specific traits into the crop, the availability of a complete set of molecular markers covering the entire genome makes it straightforward to discover which segments have been transferred and which are essential to maintain, so as to preserve the introduced trait.
Germplasm banks are obviously a source of new genetic variation for the molecular geneticist as well as the plant breeder. The isolation of specific alleles determining self-incompatibility from Brassica oleracea accessions for subsequent introduction into oil seed rape is described as an example.  相似文献   

4.
In recent past, genomic tools especially molecular markers have been extensively used for understanding genome dynamics as well for applied aspects in crop breeding. Several new genomics technologies such as next generation sequencing (NGS), high-throughput marker genotyping, -omics technologies have emerged as powerful tools for understanding genome variation in crop species at DNA, RNA as well as protein level. These technologies promise to provide an insight into the way gene(s) are expressed and regulated in cell and to unveil metabolic pathways involved in trait(s) of interest for breeders not only in model-/major- but even for under-resourced crop species which were once considered “orphan” crops. In parallel, genetic variation for a species present not only in cultivated genepool but even in landraces and wild species can be harnessed by using new genetic approaches such as advanced-backcross QTL (AB-QTL) analysis, introgression libraries (ILs), multi-parent advanced generation intercross (MAGIC) population and association genetics. The gene(s) or genomic regions, responsible for trait(s) of interest, identified either through conventional linkage mapping or above mentioned approaches can be introgressed or pyramided to develop superior genotypes through molecular breeding approaches such as marker-assisted back crossing (MABC), marker assisted recurrent selection (MARS) and genome wide selection (GWS). This article provides an overview on some recent genomic tools and novel genetic and breeding approaches as mentioned above with a final aim of crop improvement.  相似文献   

5.
6.
Primary germplasm pools represent the most accessible source of new alleles for crop improvement, but not all effective alleles are available in the primary germplasm pool, and breeders must sometimes confront the difficulties of introgressing genes from the secondary and tertiary germplasm pools in cotton by using synthetic polyploids as introgression bridges. Two parental Gossypium nelsonii x Gossypium australe AFLP genetic linkage maps were used to identify G genome chromosome-specific molecular markers, which in turn were used to track the fidelity and frequency of G. australe chromosome transmission in a Gossypium hirsutum x G. australe hexaploid bridging family. Conversely, when homoeologous recombination is low, first generation aneuploids are useful adjuncts to genetic linkage mapping. Although locus ordering was not possible, the distribution of AFLP markers among 18 multiple chromosome addition aneuploids identified mapping errors among the G. australe and G. nelsonii linkage groups and assigned non-segregating G. australe AFLPs to linkage groups. Four putatively recombined G. australe chromosomes were identified in 5 of the 18 aneuploids. The G. australe and G. nelsonii genetic linkage maps presented here represent the first AFLP genetic linkage maps for the Gossypium G genome.  相似文献   

7.
8.
The availability of complete genome sequences, along with other genomic resources for Arabidopsis, rice, pigeon pea, soybean and other crops, has revolutionized our understanding of the genetic make-up of plants. Next-generation DNA sequencing (NGS) has facilitated single nucleotide polymorphism discovery in plants. Functionally-characterized sequences can be identified and functional markers (FMs) for important traits can be developed at an ever-increasing ease. FMs are derived from sequence polymorphisms found in allelic variants of a functional gene. Linkage disequilibrium-based association mapping and homologous recombinants have been developed for identification of “perfect” markers for their use in crop improvement practices. Compared with many other molecular markers, FMs derived from the functionally characterized sequence genes using NGS techniques and their use provide opportunities to develop high-yielding plant genotypes resistant to various stresses at a fast pace.  相似文献   

9.
10.
11.
The availability of sequence data derived from shotgun sequencing programs enables mining for simple sequence repeats (SSRs), providing useful genetic markers for crop improvement. This study presents the development and characterization of 40 SSR markers from Brassica oleracea shotgun sequence and their cross‐amplification across Brassica species. The markers show reliable amplification, genome specificity and considerable polymorphism, demonstrating the utility of SSRs for genetic analysis of commercial Brassica germplasm.  相似文献   

12.
13.
基因组编辑技术在植物基因功能鉴定及作物育种中的应用   总被引:1,自引:0,他引:1  
周想春  邢永忠 《遗传》2016,38(3):227-242
  相似文献   

14.
15.
Gene‐editing techniques are currently revolutionizing biology, allowing far greater precision than previous mutagenic and transgenic approaches. They are becoming applicable to a wide range of plant species and biological processes. Gene editing can rapidly improve a range of crop traits, including disease resistance, abiotic stress tolerance, yield, nutritional quality and additional consumer traits. Unlike transgenic approaches, however, it is not facile to forensically detect gene‐editing events at the molecular level, as no foreign DNA exists in the elite line. These limitations in molecular detection approaches are likely to focus more attention on the products generated from the technology than on the process in itself. Rapid advances in sequencing and genome assembly increasingly facilitate genome sequencing as a means of characterizing new varieties generated by gene‐editing techniques. Nevertheless, subtle edits such as single base changes or small deletions may be difficult to distinguish from normal variation within a genotype. Given these emerging scenarios, downstream ‘omics’ technologies reflective of edited affects, such as metabolomics, need to be used in a more prominent manner to fully assess compositional changes in novel foodstuffs. To achieve this goal, metabolomics or ‘non‐targeted metabolite analysis’ needs to make significant advances to deliver greater representation across the metabolome. With the emergence of new edited crop varieties, we advocate: (i) concerted efforts in the advancement of ‘omics’ technologies, such as metabolomics, and (ii) an effort to redress the use of the technology in the regulatory assessment for metabolically engineered biotech crops.  相似文献   

16.
谭禄宾  孙传清 《植物学报》2021,56(2):134-137
通过人工选择优良遗传变异,将野生植物驯化为栽培作物,以满足人类对食物的需求,是人类发展历史中的重要事件,推动了人类文明的持续发展。随着世界人口持续增加,耕地面积不断减少,灾害性天气频发,全球粮食安全问题日趋严峻。基于作物驯化的分子机理及重要农艺性状的遗传基础,结合高通量基因组测序和高效基因组编辑技术,从头驯化野生植物,...  相似文献   

17.
As PCR methods have improved over the last 15 years, there has been an upsurge in the number of new DNA marker tools, which has allowed the generation of high-density molecular maps for all the key Brassica crop types. Biotechnology and molecular plant breeding have emerged as a significant tool for molecular understanding that led to a significant crop improvement in the Brassica napus species. Brassica napus possess a very complicated polyploidy-based genomics. The quantitative trait locus (QTL) is not sufficient to develop effective markers for trait introgression. In the coming years, the molecular marker techniques will be more effective to determine the whole genome impairing desired traits. Available genetic markers using the single-nucleotide sequence (SNP) technique and high-throughput sequencing are effective in determining the maps and genome polymorphisms amongst candidate genes and allele interactions. High-throughput sequencing and gene mapping techniques are involved in discovering new alleles and gene pairs, serving as a bridge between the gene map and genome evaluation. The decreasing cost for DNA sequencing will help in discovering full genome sequences with less resources and time. This review describes (1) the current use of integrated approaches, such as molecular marker technologies, to determine genome arrangements and interspecific outcomes combined with cost-effective genomes to increase the efficiency in prognostic breeding efforts. (2) It also focused on functional genomics, proteomics and field-based breeding practices to achieve insight into the genetics underlying both simple and complex traits in canola.  相似文献   

18.
A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as “foundation for twenty-first century crop improvement”, a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as “the holy grail” of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.  相似文献   

19.
20.
The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号