首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review examines under what circumstances the rate of cell division among cells of the root meristem is known to vary. First, methods are compared that have been used to quantify cell division rate. These can be grouped as being either cytological, in which the rate of accumulation of cells in a particular phase of the cell cycle is determined based on some form of cytological labeling, or kinematic, in which the rate of cell accumulation is determined from the net movement of cells. Then, evidence is reviewed as to whether cell division rates vary between different tissues or cell types, between different positions in the root, or finally between different environments. The evidence is consistent with cells dividing at a constant rate, and well documented examples where cell division rate changes substantially are rare. The constancy of cell division rate contrasts with the number of dividing cells, which varies extensively, and implies that a major point for cell cycle control is governing the exit from the proliferative state at the basal boundary of the meristem.  相似文献   

2.
3.
5-aminouracil induces a partial synchronization of mitoses in barley, onion and garlic root tips. The highest degree of synchronization has been achieved in garlic where the mitotic index reached the value of about 36%, while in onion and barley the values equalled about 20%. The concentration causing the maximal synchronization in barley (400–750 ppm) was many times higher than in garlic (62.5 ppm) and onion (100 ppm). The occurrence of micronuclei was evaluated in garlic, under the conditions when synchronization was maximal. It was increased nearly tenfold as compared with the control.  相似文献   

4.
Cis -abscisic acid (ABA), when applied to maize ( Zea mays L. cv. LG 11) roots, decreases the rates of cell growth and cell division in the meristem. It also decreases the rate at which nuclei become labelled with [3H]-thymidine and enter mitosis. Removing the root cap accelerates the entry of nuclei into the DNA synthetic phase of the mitotic cycle and enhances the rate of cell proliferation in the quescent centre. ABA diminishes these effects, but does not suppress them. Thus, ABA cannot wholely substitute for the presence of a cap. One of the primary effects of applied ABA is to retard cell enlargement which may in turn affect the rate of cell division; natural endogenous ABA may act similarly. ABA might in this way assist in maintaining the quiescent centre in intact roots, but cannot be the sole agent involved.  相似文献   

5.
The function of the ARF-GEF family has drawn great attention recently, especially GNOM and GNL1, owing to their important role in plant development. A homolog of GBF was identified in Nicotiana tabacum, named NtGNL1, which is ubiquitously expressed throughout the tobacco life cycle. In NtGNL1 RNAi plants, irregular orientation of cell division and asynchronous cell development during early embryogenesis disrupted the symmetry of the developing embryo. In addition, root growth in transgenic lines was significantly slower than that in wild-type plants, although the structure of the root tip was largely intact. Pollen germination and pollen tube growth were also inhibited in the transgenic lines, and the tip of the pollen tube presented various aberrant morphologies in one of the transgenic lines. The phenotypes of different NtGNL1 RNAi transgenic lines suggest that the NtGNL1 is likely to be involved not only in embryogenesis and postembryonic development, but also in sexual reproduction; thus, NtGNL1 may play multiple and critical roles in plant development.  相似文献   

6.
P. W. Barlow 《Planta》1969,88(3):215-223
Summary In the presence of 10-2 M hydroxyurea cell division is prevented but cell growth continues. The rate of cell growth varies within the apex, depending on the location of the cell. The rate of growth is low in the quiescent centre and non-dividing region of the root cap but higher elsewhere.Indolyl acetic acid causes a transient increase in the rate of cell enlargement but after about 12 hours has no further effect.  相似文献   

7.
Two-dimensional gel electrophoresis of pea root and root hair proteins revealed the existence of at least 10 proteins present at elevated levels in root hairs. One of these, named RH2, was isolated and a partial amino acid sequence was determined from two tryptic peptides. Using this sequence information oligonucleotides were designed to isolate by PCR an RH2 cDNA clone. In situ hybridization studies with this cDNA clone showed that rh2 is not only expressed in root hairs, but also in root epidermal cells lacking these tubular outgrowths. During post-embryonic development the gene is switched on after the transition of protoderm into epidermis and since rh2 is already expressed in a globular pea embryo in the protoderm at the side attached to the suspensor, we conclude that the expression of rh2 is developmentally regulated. At the amino acid level RH2 is 95% homologous to the pea PR protein I49a. These gene encoding I49a is induced in pea pods upon inoculation with the pathogen Fusarium solani [12]. We postulate that rh2 contributes to a constitutive defence barrier in the root epidermis. A similar role has been proposed for chalcone synthase (CHS) and chitinase, pathogenesis-related protein that are also constitutively present in certain epidermal tissues.  相似文献   

8.
The kinesin-like calmodulin (CaM) binding protein (KCBP), a minus end-directed microtubule motor protein unique to plants, has been implicated in cell division. KCBP is negatively regulated by Ca(2)+ and CaM, and antibodies raised against the CaM binding region inhibit CaM binding to KCBP in vitro; therefore, these antibodies can be used to activate KCBP constitutively. Injection of these antibodies into Tradescantia virginiana stamen hair cells during late prophase induces breakdown of the nuclear envelope within 2 to 10 min and leads the cell into prometaphase. However, mitosis is arrested, and the cell does not progress into anaphase. Injection of antibodies later during cell division has no effect on anaphase transition but causes aberrant phragmoplast formation and delays the completion of cytokinesis by approximately 15 min. These effects are achieved without any apparent degradation of the microtubule cytoskeleton. We propose that during nuclear envelope breakdown and anaphase, activated KCBP promotes the formation of a converging bipolar spindle by sliding and bundling microtubules. During metaphase and telophase, we suggest that its activity is downregulated.  相似文献   

9.
Glycogen synthase kinase 3(GSK3) proteins play key roles in brassinosteroid(BR) signaling during plant growth and development by phosphorylating various substrates. However,how GSK3 protein stability and activity are themselves modulated is not well understood.Here, we demonstrate in vitro and in vivo that C-TERMINAL DOMAIN PHOSPHATASELIKE 3(Os CPL3), a member of the RNA Pol II CTD phosphatase-like family, physically interacts with Os GSK2 in rice(Oryza sativa). Os CPL3 expression was widely det...  相似文献   

10.
Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance   总被引:2,自引:0,他引:2  
Chen CC  Chen YY  Tang IC  Liang HM  Lai CC  Chiou JM  Yeh KC 《Plant physiology》2011,156(4):2225-2234
The reversible conjugation of the small ubiquitin-like modifier (SUMO) to protein substrates occurs as a posttranslational regulatory process in eukaryotic organisms. In Arabidopsis (Arabidopsis thaliana), several stress-responsive SUMO conjugations are mediated mainly by the SUMO E3 ligase SIZ1. In this study, we observed a phenotype of hypersensitivity to excess copper in the siz1-2 and siz1-3 mutants. Excess copper can stimulate the accumulation of SUMO1 conjugates in wild-type plants but not in the siz1 mutant. Copper accumulated to a higher level in the aerial parts of soil-grown plants in the siz1 mutant than in the wild type. A dramatic difference in copper distribution was also observed between siz1 and wild-type Arabidopsis treated with excess copper. As a result, the shoot-to-root ratio of copper concentration in siz1 is nearly twice as high as that in the wild type. We have found that copper-induced Sumoylation is involved in the gene regulation of metal transporters YELLOW STRIPE-LIKE 1 (YSL1) and YSL3, as the siz1 mutant is unable to down-regulate the expression of YSL1 and YSL3 under excess copper stress. The hypersensitivity to excess copper and anomalous distribution of copper observed in the siz1 mutant are greatly diminished in the siz1ysl3 double mutant and slightly in the siz1ysl1 double mutant. These data suggest that SIZ1-mediated sumoylation is involved specifically in copper homeostasis and tolerance in planta.  相似文献   

11.
Alternate treatments of Allium cepa root meristems with hydroxyurea (HU) and caffeine give rise to extremely large and highly elongated cells with atypical images of mitotic divisions, including internuclear asynchrony and an unknown type of interchromosomal asynchrony observed during metaphase-to-anaphase transition. Another type of asynchrony that cannot depend solely on the increased length of cells was observed following long-term incubation of roots with HU. This kind of treatment revealed both cell nuclei entering premature mitosis and, for the first time, an uncommon form of mitotic abnormality manifested in a gradual condensation of chromatin (spanning from interphase to prometaphase). Immunocytochemical study of polykaryotic cells using anti-β tubulin antibodies revealed severe perturbations in the microtubular organization of preprophase bands. Quantitative immunofluorescence measurements of the control cells indicate that the level of cyclin B-like proteins reaches the maximum at the G2 to metaphase transition and then becomes reduced during later stages of mitosis. After long-term incubation with low doses of HU, the amount of cyclin B-like proteins considerably increases, and a significant number of elongated cells show gradients of these proteins spread along successive regions of the perinuclear cytoplasm. It is suggested that there may be a direct link between the effects of HU-mediated deceleration of S- and G2-phases and an enhanced concentration of cyclin B-like proteins. In consequence, the activation of cyclin B-CDK complexes gives rise to an abnormal pattern of premature mitotic chromosome condensation with biphasic nuclear structures having one part of chromatin decondensed, and the other part condensed.  相似文献   

12.
A study was made of cell division activity and hormonal status in roots of 4 day old wheat seedling treated with wheat germ agglutinin (WGA). The revealed stimulating effect of WGA on mitotic index (MI) and cell area in root extension zone was specific for this lectin, because gliadin, taken as a control protein, caused no changes in growth parameters. Phytolectins (phytohemagglutinin and concanavalin A) possessing properties of mitogens rendered no such essential influence on cell growth of wheat. Immunoassay has shown that WGA-treatment leads to accumulation of auxins and cytokinins in roots. This suggest participation of WGA in regulation of MI of meristem cells in roots of seedlings during their interaction with phytohormones.  相似文献   

13.
Given the central role of cell division in meristems, one might expect meristem growth to be regulated by mitotic checkpoints, including checkpoints for correct microtubule function. Here, we studied the role of two close Phosducin-Like Protein 3 homologs from Arabidopsis thaliana (PLP3a and PLP3b) in the microtubule assembly pathway and determined the consequences of inhibiting PLP3a and PLP3b expression in the meristem. PLP3 function is essential in Arabidopsis: impairing PLP3a and PLP3b expression disrupted microtubule arrays and caused polyploidy, aneuploidy, defective cytokinesis, and disoriented cell growth. Consistent with a role in microtubule formation, PLP3a interacted with beta-tubulin in the yeast two-hybrid assay and, when overexpressed, increased resistance to drugs that inhibit tubulin polymerization. Inhibition of PLP3 function targeted to the meristem caused severe mitotic defects, but the cells carried on cycling through DNA replication and abortive cytokinesis. Thus, we showed that PLP3 is involved in microtubule formation in Arabidopsis and provided genetic evidence that cell viability and growth in the meristem are not subordinate to successful completion of microtubule-dependent steps of cell division.  相似文献   

14.
Plastids have evolved from an endosymbiosis between a cyanobacterial symbiont and a eukaryotic host cell. Their division is mediated both by proteins of the host cell and conserved bacterial division proteins. Here, we identified a new component of the plastid division machinery, Arabidopsis thaliana SulA. Disruption of its cyanobacterial homolog (SSulA) in Synechocystis and overexpression of an AtSulA-green fluorescent protein fusion in Arabidopsis demonstrate that these genes are involved in cell and plastid division, respectively. Overexpression of AtSulA inhibits plastid division in planta but rescues plastid division defects caused by overexpression of AtFtsZ1-1 and AtFtsZ2-1, demonstrating that its role in plastid division may involve an interaction with AtFtsZ1-1 and AtFtsZ2-1.  相似文献   

15.
R Nash  G Tokiwa  S Anand  K Erickson    A B Futcher 《The EMBO journal》1988,7(13):4335-4346
WHI1-1 is a dominant mutation that reduces cell volume by allowing cells to commit to division at abnormally small sizes, shortening the G1 phase of the cell cycle. The gene was cloned, and dosage studies indicated that the normal gene activated commitment to division in a dose-dependent manner, and that the mutant gene had a hyperactive but qualitatively similar function. Mild over-expression of the mutant gene eliminated G1 phase, apparently entirely relaxing the normal G1 size control, but revealing hitherto cryptic controls. Sequence analysis showed that the hyperactivity of the mutant was caused by the loss of the C-terminal third of the wild-type protein. This portion of the protein contained PEST regions, which may be signals for protein degradation. The WHI1 protein had sequence similarity to clam cyclin A, to sea urchin cyclin and to Schizosaccharomyces pombe cdc13, a cyclin homolog. Since cyclins are inducers of mitosis, WHI1 may be a direct regulator of commitment to division. A probable accessory function of the WHI1 activator is to assist recovery from alpha factor arrest; WHI1-1 mutant cells could not be permanently arrested by pheromone, consistent with a hyperactivation of division.  相似文献   

16.
Yu Y  Steinmetz A  Meyer D  Brown S  Shen WH 《The Plant cell》2003,15(12):2763-2777
Although most of the components of the cell cycle machinery are conserved in all eukaryotes, plants differ strikingly from animals by the absence of a homolog of E-type cyclin, an important regulator involved in G1/S-checkpoint control in animals. By contrast, plants contain a complex range of A-type cyclins, with no fewer than 10 members in Arabidopsis. We previously identified the tobacco A-type cyclin Nicta;CYCA3;2 as an early G1/S-activated gene. Here, we show that antisense expression of Nicta;CYCA3;2 in tobacco plants induces defects in embryo formation and impairs callus formation from leaf explants. The green fluorescent protein (GFP)-Nicta;CYCA3;2 fusion protein was localized in the nucleoplasm. Transgenic tobacco plants overproducing GFP-Nicta;CYCA3;2 could not be regenerated from leaf disc transformation, whereas some transgenic Arabidopsis plants were obtained by the floral-dip transformation method. Arabidopsis plants that overproduce GFP-Nicta;CYCA3;2 showed reduced cell differentiation and endoreplication and a dramatically modified morphology. Calli regenerated from leaf explants of these transgenic Arabidopsis plants were defective in shoot and root regeneration. We propose that Nicta;CYCA3;2 has important functions, analogous to those of cyclin E in animals, in the control of plant cell division and differentiation.  相似文献   

17.
Phytohormones as well as temporal and spatial regulation of the cell cycle play a key role in plant development. Here, we investigated the function and regulation of an alfalfa (Medicago sativa) A2-type cyclin in three distinct root developmental programs: in primary and secondary root development, nodule development, and nematode-elicited gall formation. Using transgenic plants carrying the Medsa;cycA2;2 promoter-beta-glucuronidase gene fusion, in combination with other techniques, cycA2;2 expression was localized in meristems and proliferating cells in the lateral root and nodule primordia. Rapid induction of cycA2;2 by Nod factors demonstrated that this gene is implicated in cell cycle activation of differentiated cells developing to nodule primordia. Surprisingly, cycA2;2 was repressed in the endoreduplicating, division-arrested cells both during nodule development and formation of giant cells in nematode-induced galls, indicating that CycA2;2 was dispensable for S-phase in endoreduplication cycles. Overexpression of cycA2;2 in transgenic plants corresponded to wild type protein levels and had no apparent phenotype. In contrast, antisense expression of cycA2;2 halted regeneration of somatic embryos, suggesting a role for CycA2;2 in the formation or activity of apical meristems. Expression of cycA2;2 was up-regulated by auxins, as expected from the presence of auxin response elements in the promoter. Moreover, auxin also affected the spatial expression pattern of this cyclin by shifting the cycA2;2 expression from the phloem to the xylem poles.  相似文献   

18.
The Arabidopsis genome encodes 10 D-type cyclins (CYCD); however, their differential role in cell cycle control is not well known. Among them, CYCD4;2 is unique in the amino acid sequence; namely, it lacks the Rb-binding motif and the PEST sequence that are conserved in CYCDs. Here, we have shown that CYCD4;2 suppressed G1 cyclin mutations in yeast and formed a kinase complex with CDKA;1, an ortholog of yeast Cdc28, in insect cells. Hypocotyl explants of CYCD4;2 over-expressing plants showed faster induction of calli than wild-type explants on a medium containing lower concentration of auxin. These results suggest that CYCD4;2 has a promotive function in cell division by interacting with CDKA;1 regardless of the unusual primary sequence.  相似文献   

19.
The G1-to-S-phase transition is a key regulatory point in the cell cycle, but the rate-limiting component in plants is unknown. Overexpression of CYCLIN D3;1 (CYCD3;1) in transgenic plants increases mitotic cycles and reduces endocycles, but its effects on cell cycle progression cannot be unambiguously determined. To analyze the cell cycle roles of plant D-type cyclins, we overexpressed CYCD3;1 in Arabidopsis thaliana cell suspension cultures. Changes in cell number and doubling time were insignificant, but cultures exhibited an increased proportion of G2- over G1-phase cells, as well as increased G2 arrest in response to stationary phase and sucrose starvation. Synchronized cultures confirm that CYCD3;1-expressing (but not CYCD2;1-expressing) cells show increased G2-phase length and delayed activation of mitotic genes such as B-type cyclins, suggesting that CYCD3;1 has a specific G1/S role. Analysis of putative cyclin-dependent kinase phosphorylation sites within CYCD3;1 shows that mutating Ser-343 to Ala enhances CYCD3;1 potency without affecting its rate of turnover and results in a fivefold increase in the level of cell death in response to sucrose removal. We conclude that CYCD3;1 dominantly drives the G1/S transition, and in sucrose-depleted cells the decline in CYCD3;1 levels leads to G1 arrest, which is overcome by ectopic CYCD3;1 expression. Ser-343 is likely a key residue in modulating CYCD3;1 activity in response to sucrose depletion.  相似文献   

20.
Jiang  Wei  Zhou  Shaoli  Huang  Honglin  Song  Huazhi  Zhang  Qinglu  Zhao  Yu 《Plant molecular biology》2020,104(4-5):499-511
Plant Molecular Biology - Rice MERISTEM ACTIVITYLESS (MAL), a RING-H2 finger domain (RFD)-containing gene, regulates meristem cell viability after the initiation of root primordia mediated by...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号