首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a comparative study between swimming in swimwear (control-sw) and swimming in clothes (clothes-sw), oxygen uptake (VO2) and ratings of perceived exertion (RPE) were measured. The subjects were six male members of a university swimming team. Three swimming strokes--the breaststroke, the front crawl stroke and the elementary backstroke--were applied. With regards to clothes-sw, swimmers wore T-shirts, sportswear (shirt and pants) over swimwear and running shoes. In both cases of control-sw and clothes-sw, the VO2 was increased exponentially with increased swimming speed. The VO2 of the subjects during the clothed tests did not exceed 1.4 times of that in the case of control-sw at swimming speeds below 0.3 m/s. As swimming speeds increased, VO2 difference in both cases increased. Consequently, VO2 in the clothed tests was equal to 1.5-1.6 times and 1.5-1.8 times of that in the swimwear tests at speeds of 0.5 and 0.7 m/s, respectively. At speeds below 0.6 m/s in clothes-sw, the breaststroke showed lower VO2 than the front crawl stroke, and the elementary backstroke showed higher VO2 than the other two swimming strokes. RPE increased linearly with %peak VO2. In addition, any RPE differences among the three swimming strokes were not shown in the control-sw tests. At an exercise intensity above 60 %peak VO2, clothed swimmers showed slightly higher RPE in the front crawl stroke compared to that in the two other swimming strokes.  相似文献   

2.
Few studies have examined the aerobic demand of backstroke swimming, and its relation to body morphology, technique, or performance. The aims of this study were thus to: i) describe the aerobic demand of backstroke swimming in proficient swimmers at high velocities; ii) assess the effects of body size and stroke technique on submaximal and maximal O2 costs, and; iii) test for a relationship between submaximal O2 costs and maximal performance. Sixteen male competitive swimmers were tested during backstroke swimming at velocities from 1.0 to 1.4 m.s-1. Results showed that VO2 increased linearly with velocity (m.s-1) following the equation VO2 = 6.28v - 3.81 (r = 0.77, SEE/Y = 14.9%). VO2 was also related to the subjects' body mass, height, and armspan. Longer distances per stroke were associated with lower O2 costs, and better maximal performances. A significant relation was found between VO2 at 1.1 m.s-1, adjusted for body mass, and 400 m performance (r = -0.78). Submaximal VO2 was also related to reported times for 100 m and 200 m races. Multiple correlation analyses indicated that VO2 at 1.1 m.s-1 and VO2max accounted for up to 78% of the variance in maximal performances. These results suggest that the assessment of submaximal and maximal VO2 during backstroke swimming may be of value in the training and testing programs of competitive swimmers.  相似文献   

3.
In the process of swimming, the shoulder joint will be damaged when the arm is stroking. To reduce the injury of shoulder joints and improve the speed of stroke, it is necessary to train the flexibility of shoulder joints. This paper briefly introduced the concept of shoulder joint and flexibility and then explained the traditional stretching training method and proprioceptive neuromuscular facilitation (PNF) stretching method. Then, taking 20 college team swimmers of Yunnan University as the subjects, the comparative experiment of the traditional and PNF stretching methods was carried out. The results showed that the shoulder rotation index of the athletes after the use of the PNF stretching method was significantly lower compared with the traditional stretching method; under the PNF stretching method, the average power and total work of shoulder joints significantly improved in the high-speed external rotation, and the performance in the 50 m freestyle also significantly improved.  相似文献   

4.
The purpose of the current study was to identify the relationships between competitive performance and tether forces according to distance swam, in the four strokes, and to analyze if relative values of force production are better determinants of swimming performance than absolute values. The subjects (n = 32) performed a 30 s tethered swimming all-out effort. The competitive swimming velocities were obtained in the distances 50, 100 and 200 m using official chronometric values of competitions within 25 days after testing protocol. Mean force and velocity (50 m event) show significant correlations for front crawl (r = .92, p < .01), backstroke (r = .81, p < .05), breaststroke (r = .94, p < .01) and butterfly (r = .92, p < .01). The data suggests that absolute values of force production are more associated to competitive performance than relative values (normalized to body mass). Tethered swimming test seems to be a reliable protocol to evaluate the swimmer stroking force production and a helpful estimator of competitive performance in short distance competitive events.  相似文献   

5.
The swimming behaviour of ten species of diving beetles was studied with a video image analysing system, with the aim of testing the interpretation of their size and shape as functional characters reflecting adaptations to different swimming strategies. Velocity, sinuosity of the trajectory, and the relation between the two were studied in an unobstructed aquarium and, for the four largest species, in an aquarium with vertical sticks. Species predicted to be poor swimmers had the lowest average and maximum velocities. A globular species considered to have high manoeuvrability swam in highly sinuous trajectories, and could maintain this sinuosity at a wide range of velocities. One of the larger species, considered to be adapted to high speed swimming, also swam in highly sinuous trajectories, but only at slow velocities; its swimming pattern was considered to be the product of behavioural rather than morphological constraints. For two of the largest species, there was a significant decrease in sinuosity at higher velocities, whilst another was found to have a good compromise between velocity and manoeuvrability. In the aquarium with obstacles all the species reduced their maximum velocity, while the effect on sinuosity varied between species. Although the space limitation of the aquarium and the lack of motivation could have prevented some species from reaching their maximal velocities, a good agreement was found between the predicted and the actual swimming characteristics.  相似文献   

6.
Two hypotheses were tested: (a) stroke frequency is predictable from the amplitudes of bodyroll and the turning effect around the body's long-axis generated by the non-propulsive fluid forces (that is, the torque driving bodyroll), and (b) swimmers exhibit at least one alteration in the factors influencing the bodyroll cycle as they increase the stroke frequency for faster swimming, so that they can reduce the fluid forces "wasted" in non-propulsive directions. The mechanical formula that links stroke frequency and the kinetics of bodyroll was derived on the basis of Euler's equation of motion. Experimental data were collected from competitive swimmers to validate the derived mechanical relations and to examine the strategy that skilled swimmers would use to change the stroke frequency as they swam faster. A strong correlation (slow: r = 0.70 and fast: r = 0.85) and a non-significant difference between the observed stroke frequency and the formula-based estimates supported the first hypothesis. As the subjects increased stroke frequency (38%) for faster swimming, bodyroll decreased (19%) and the trunk twist increased (40%). The combined alterations resulted in a small reduction in the shoulder roll (12%), enabling the swimmers to gain the benefits associated with a large rolling action of the upper trunk, while limiting the amount of increase in the turning effect of fluid forces in non-propulsive directions (40%). The second hypothesis was, therefore, supported. The derived mechanical formula provides a theoretical basis to explore mechanisms underlying the interrelations among stroke frequency, stroke length and swimming speed, and sheds light on a possible reason that swimmers generally adopt six-beat kicks.  相似文献   

7.
ABSTRACT: Lomax, M, Iggleden, C, Tourell, A, Castle, S, and Honey, J. Inspiratory muscle fatigue following race-paced swimming is not restricted to the front crawl stroke. J Strength Cond Res 26(10): 2729-2733, 2012-The occurrence of inspiratory muscle fatigue (IMF) has been documented after front crawl (FC) swimming of various distances. Whether IMF occurs after other competitive swimming strokes is not known. The aim of the present study was to assess the impact of all 4 competitive swimming strokes on the occurrence of IMF after race-paced swimming and to determine whether the magnitude of IMF was related to the breathing pattern adopted and hence breathing frequency (fb). Eleven, nationally ranked, youth swimmers completed four 200-m swims (one in each competitive stroke) on separate occasions. The order of the swims, which consisted of FC, backstroke (BK), breaststroke (BR), and butterfly (FLY), was randomized. Maximal inspiratory mouth pressure (MIP) was assessed before (after a swimming and inspiratory muscle warm-up) and after each swim with fb calculated post swim from recorded data. Inspiratory muscle fatigue was evident after each 200-m swim (p < 0.05) but did not differ between the 4 strokes (range 18-21%). No relationship (p > 0.05) was observed between fb and the change in MIP (FC: r = -0.456; BK: r = 0.218; BR: r = 0.218; and FLY: r = 0.312). These results demonstrate that IMF occurs in response to 200-m race-paced swimming in all strokes and that the magnitude of IMF is similar between strokes when breathing is ad libitum occurring no less than 1 breath (inhalation) every third stroke.  相似文献   

8.
The aim of this investigation was to study the possible relationships between anthropometry, flexibility and specific swimming results in female breaststroke swimmers. Subjects were 125 female breaststroke swimmers in age of 11-18 years. Body height and mass were measured and BMI (kg/m2 ) and Broca index (body height in cm - 100 = weight in kg) were calculated. The flexibility of hip external rotation, knee external rotation, ankle dorsal flexion and ankle supination were measured with plastic goniometer. 100 m breaststroke swimming using kickboard and legs only was used as a swimming performance parameter. The number of kicks was also fixed. Horizontal jumping ability was measured using a simple standing broad jump (cm) minus body height (cm). As a rule, flexibility in different joints did not depend on anthropometrical parameters. Only knee external rotation and ankle dorsal flexion correlated significantly with body mass (r = -0.221 and r = -0.210, respectively) and BMI (r = 0.242 and r = 0.204, respectively). The relationship between flexibility in different joints, as a rule, was not significant. Stepwise multiple regression analysis indicated that from the used anthropometrical parameters the most important was the body height, which explained 11.1% (R2 x 100) of the 100 m breaststroke swim results using legs only. The most important parameter from the measured flexibility indices was knee external rotation (11.1%, R2 x 100). Combination of knee external rotation and ankle supination increased the determination coefficient to 24.4%. Finally, three flexibility measures (knee external rotation, ankle supination, hip external rotation) explained the swimming results by 28.2% (R2 x 100). It was concluded that the good flexibility is more important than single anthropometrical parameters when explaining the breaststroke swimming results using kickboard and legs only.  相似文献   

9.
Only a limited amount of research has gone into evaluating the contribution made by the upper arm to the propulsion of elite swimmers with an amputation at elbow level. With assistance of computational fluid dynamics (CFD) modelling, the swimming technique of competitive arm amputee swimmers can be assessed through numerical simulations which test the effect of various parameters on the effectiveness of the swimming propulsion.This numerical study investigates the effect of body roll amplitude and of upper arm rotation speed on the propulsion of an arm amputee swimmer, at different mean swimming speeds. Various test cases are simulated resulting in a thorough analysis of the complex body/fluid interaction with a detailed quantitative assessment of the effect of the variation of each parameter on the arm propulsion. It is found that a body roll movement with an amplitude of 45° enhances greatly the propulsive contribution from the upper arm with an increase of about 70% in the propulsive force compared to the no roll condition. An increase in the angular velocity of the upper arm also leads to a concomitant increase in the propulsive forces produced by the arm.Such results have direct implications for competitive arm amputee front crawl swimmers and for those who coach them. One important message that emerges in this present work is that there exists, for any given swimming speed, a minimum angular velocity at which the upper arm must be rotated to generate effective propulsion. Below this velocity, the upper arm will experience a net resistive drag force which adversely affects swimming performance.  相似文献   

10.
The effect of (a) increasing velocity and (b) added resistance was examined on the stroke (stroke length, stroke rate [SR]), coordination (index of coordination [IdC], propulsive phases), and force (impulse and peaks) parameters of 7 national-level front crawl swimmers (17.14 ± 2.73 years of swimming; 57.67 ± 1.62 seconds in the 100-m freestyle). The additional resistance was provided by a specially designed parachute. Parachute swimming (PA) and free-swimming (F) conditions were compared at 5 velocities per condition. Video footage was used to calculate the stroke and coordination parameters, and sensors allowed the determination of force parameters. The results showed that (a) an increase in velocity (V) led to increases in SR, IdC, propulsive phase duration, and peak propulsive force (p < 0.05), but no significant change in force impulse per cycle, whatever the condition (PA or F); and (b) in PA conditions, significant increases in the IdC, propulsive phase duration, and force impulse and a decrease in SR were recorded at high velocities (p < 0.05). These results indicated that, in the F condition, swimmers adapted to the change in velocity by modifying stroke and coordination rather than force parameters, whereas the PA condition enhanced the continuity of propulsive action and force development. Added resistance, that is, "parachute training," can be used for specific strength training purposes as long as swimming is performed near maximum velocity.  相似文献   

11.
By comparing the time of the same distance swum with and without an added resistance, under the assumption of an equal power output in both cases, the drag of 73 top swimmers was estimated. The active drag Fr(a.d.) at maximal swimming velocities varied considerably across strokes and individuals. In the females Fr(a.d.) ranged from 69.78 to 31.16 N in the front-crawl, from 83.04 to 37.78 N in dolphin, from 93.56 to 45.19 N in breaststroke, and from 65.51 to 37.79 N in back-stroke. In the males Fr(a.d.) ranged from 167.11 to 42.23 N in front-crawl, from 156.09 to 46.95 N in dolphin, from 176.87 to 55.61 N in breaststroke, and from 146.28 to 46.36 N in back-stroke. Also, the ratio of Fr(a.d.) to the passive drag Fr(a.d.) as determined for the analogical velocity in a tugging condition (in standard body position-front gliding) shows considerable individual variations. In the female swimmers variations in Fr(a.d.)/Fr(p.d.) ranged from 145.17 to 59.94% in front-crawl, from 192.39 to 85.57% in dolphin, from 298.03 to 124.50% in breaststroke, and from 162.87 to 85.61% in back-stroke. In the male swimmers variations in Fr(a.d.)/Fr(p.d.) ranged from 162.24 to 62.39% in front-crawl, from 191.70 to 70.38% in dolphin, from 295.57 to 102.83% in breaststroke, and from 198.82 to 74.48% in back-stroke. The main reason for such variations is found in the individual features of swimming technique and can be quantitatively estimated with the hydrodynamic force coefficient, which thus provides an adequate index of technique.  相似文献   

12.
The influence of specific training on benefits from caffeine (Caf) ingestion was examined during a sprint test in a group of highly trained swimmers (T) and compared with the response of a group of untrained occasional swimmers (UT). Seven T and seven UT subjects swam freestyle two randomly assigned 2 x 100 m distances, at maximal speed and separated by 20 min of passive recovery, once after Caf (250 mg) and once after placebo (Pla) ingestion. Anaerobic capacity was assessed by the mean velocity (meters per second) during each 100 m and blood was sampled from the fingertip just before and 1, 3, 5, 7, and 9 min after each 100 m for resting and maximal blood lactate concentration ([la-]b,max) determination. The [la-]bmax was significantly enhanced by Caf in both T and UT subjects (P less than 0.01). However, only T subjects exhibited significant improvement in their swimming velocity (P less than 0.01) after Caf or any significant impairment during the second 100 m. In light of these results, it appears that specific training is necessary to benefit from the metabolic adaptations induced by Caf during supramaximal exercise requiring a high anaerobic capacity.  相似文献   

13.
This study examined the relationships between selected kinematic and physiological parameters and their influence on performance during incremental exercise in elite swimmers competing at the international level. Eleven men and ten women (all specialized in 200-m events) performed an incremental 7 x 200-m test in their specialized stroke. Stroke rate (SR), stroke length (SL), velocity (V), and blood lactate concentration (BLa) were measured for each 200 m. In addition to the cross-sectional group design, the longitudinal performance of a male swimmer was evaluated by 4 tests during a period of 20 weeks. Stroke rate increased and SL decreased with V, regardless of the age, stroke, or gender of the swimmer. Statistically significant correlations were found between SR and V (p < 0.01; r = 0.66 to 0.99), SR and SL (p < 0.01; r = -0.78 to -0.99), SL and V (except for women's freestyle and breaststroke) (p < 0.01; r = -0.67 to -0.98), and BLa and V (p < 0.01; r = 0.7 to 0.96). Changes in SR and SL were not affected by changes in BLa. Similar velocities were produced with different combinations of SR and SL. The fastest times reached in the test were generally slower than expected, and the performance in the test was not associated with competition performance. The case study revealed similar results to those of the group. The test used in this study was informative with respect to identifying the most economical and effective stroke kinematics combination for slow to submaximal velocities. It is possible that the swimming speeds were not maximal in the final 200-m swim because of cumulative fatigue, which is a major limitation for assessing race pace. An additional test that produces velocities similar to those used in competitions would be more useful for the purpose of providing optimal kinematic information specific to racing speeds, which would facilitate performance improvement through regular monitoring in training.  相似文献   

14.
The purpose of this study was to investigate the impact of 4 weeks of high-intensity vs. high-volume swim training on lactate threshold (LT) characteristics and performance. Thirteen untrained swimmers with a mean age of 19.0 ± 0.5 undertook an incremental swimming test before and after 4 weeks of training for the determination of LT. Performance was evaluated by a 50-m maximum freestyle test. The swimmers were assigned to 1 of each of 2 training groups. The high-intensity group (n = 6) focused on sprint training (SP) and swam a total of 1,808 ± 210 m. The high-volume group (n = 7) followed the same program as the SP group but swam an additional 1,100 m (38% more) of endurance swimming (SP + End). A training effect was evident in both groups as seen by the similar improvements in sprint performance of the 50-m maximum time (p < 0.01), peak velocity increases and the lower value of lactate at the individual LTs (p < 0.01). Lactate threshold velocity improved only in the SP + End group from 1.20 ± 0.12 m·s(-1) pretraining to 1.32 ± 0.12 m·s(-1) posttraining (p = 0.77, effect size = 1, p < 0.01), expressed by the rightward shifts of the individual lactate-velocity curves, indicating an improvement in the aerobic capacity. Peak lactate and lactate concentrations at LT did not significantly change. In conclusion, this study was able to demonstrate that 4 weeks of either high-intensity or high-volume training was able to demonstrate similar improvements in swimming performance. In the case of lack of significant changes in lactate profiling in response to high-intensity training, we could suggest a dissociation between the 2.  相似文献   

15.
To determine whether 4 weeks of oral creatine (Cr) supplementation could enhance single freestyle sprint and swim bench performance in experienced competitive junior swimmers, 10 young men and 10 young women (x age = 16.4 +/- 1.8 years) participated in a 27-day supplementation period and pre- and posttesting sessions. In session 1 (presupplementation testing), subjects swam one 50-m freestyle and then (after approximately 5 minutes of active recovery) one 100-m freestyle at maximum speed. Blood lactate was measured before and 1 minute after each swim trial. Forty-eight hours later, height, mass, and the sum of 6 skinfolds were recorded, and a Biokinetic Swim Bench total work output test (2 x 30-second trials, with a 10-minute passive recovery in between) was undertaken. After the pretests were completed, participants were divided into 2 groups (n = 10, Cr; and n = 10, placebo) by means of matched pairs on the basis of gender and 50-m swim times. A Cr loading phase of 20 g x d(-1) for 5 days was then instituted, followed by a maintenance phase of 5 g x d(-1) for 22 days. Postsupplementation testing replicated the presupplementation tests. Four weeks of Cr supplementation did not influence single sprint performance in the pool or body mass and composition. However, 30-second swim bench total work scores for trial 1 and trial 2 increased after Cr (p < 0.05) but not placebo ingestion. Postexercise blood lactate values were not different after supplementation for the 50- and 100-m sprint trials either within or between groups. It was concluded that 4 weeks of Cr supplementation did not significantly improve single sprint performance in competitive junior swimmers, but it did enhance swim bench test performance.  相似文献   

16.
The purpose of the study was to evaluate the effects of regular warm-up, and upper-body vibration (UBV), or UBV+ short warm-up on swimming performance in Masters Swimmers. Six women and 4 men, mean age 35 ± 9 years, active master swimmers volunteered to participate in the study. Participants were assigned to complete 1 of 3 warm-up types: regular, UBV-only, or UBV + short, rest for 3 minutes, and then completed a 50-yd (45.7 m) freestyle maximal performance time trial. The UBV treatment consisted of 5 minutes of upper-body vibration with a frequency of 22 Hz. Rating of perceived exertion (RPE) and heart rate (HR) were measured post warm-up and post 50-yd time trial. No significant mean differences (p = 0.56) were found among regular, UBV-only, or UBV + short warm-ups for 50-yd freestyle time (29.1 ± 3.36, 28.9 ± 3.39, and 29.1 ± 3.55 seconds, respectively). Individual data indicated that 40% (4/10) of the swimmers swam their fastest with UBV-only and 20% (2/10) with UBV + short warm-up compared to 40% (4/10) with regular warm-up. The RPE pre and post warm-ups did not differ significantly (p = 0.059 and p = 0.216, respectively). A significantly higher (p = 0.023) HR was observed after regular warm-up compared to UBV + short warm-up. Furthermore, HR post 50-yd after regular warm-up was significantly higher compared to UBV-only (p = 0.005) and UBV + short warm-up (p = 0.013). The findings of the present study indicate that UBV and UBV + short warm-up may be considered as addition or an alternative warm-up strategy to regular swimming warm-up, producing reduced cardio stress and perceived effort.  相似文献   

17.
1. Data on swimming energy expenditure of 30 submerged and nine surface swimmers, covering different swimming styles and taxonomic groups, are selected from the literature. 2. The costs of transport at the optimum speed are compared and related to body mass and Re numbers. 3. Fish and turtles use relatively less and most surface swimmers slightly more energy than the other submerged swimmers; man and mink are poorly adapted to swimming. 4. The metabolic rate in W at optimum speed is approximately equal to the body mass in kg for fish and turtles and three times the mass figure for the other submerged swimmers.  相似文献   

18.
In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Zhang's method were considered for camera calibration. As an example of the final application, we reconstructed the hand motion trajectories in different swimming styles and qualitatively compared this with Maglischo's model. Four highly trained male swimmers performed butterfly, breaststroke and freestyle tasks. The middle fingertip trajectories of both hands in the underwater phase were considered. The accuracy (mean absolute error) of the two calibration approaches (wand: 0.96 mm – 2D plate: 0.73 mm) was comparable to out of water results and highly superior to the classical DLT results (9.74 mm). Among all the swimmers, the hands' trajectories of the expert swimmer in the style were almost symmetric and in good agreement with Maglischo's model. The kinematic results highlight symmetry or asymmetry between the two hand sides, intra- and inter-subject variability in terms of the motion patterns and agreement or disagreement with the model. The two outcomes, calibration results and trajectory reconstruction, both move towards the quantitative 3D underwater motion analysis.  相似文献   

19.
Some penaeids are active swimmers, undertaking migrations of hundreds of nautical miles. At present, however, very little is known of swimming ability in penaeid shrimps. The aim of the present study is to investigate swimming endurance of whiteleg shrimp, Litopenaeus vannamei, against one of five flow velocities (5.41, 6.78, 8.21, 10.11, and 11.47 cm s(-1)) for up to 9000 s at 20 degrees C in a swimming channel. Body mass, hemolymph total protein concentration, and hemolymph glucose level were measured before swimming and immediately following swimming to evaluate physiological effect of swimming in L. vannamei. No shrimp swam the full 9000 s at any of the velocities tested. The swimming endurance decreased as swimming speed was increased. The relationship between swimming endurance (t, in s) and swimming speed (v, in cm s(-1)) can be described by the Curve Estimation: v.t0.38 = 159.64 (R2 = 0.94). The swimming ability index (SAI), defined as SAI = integral 0-9000 vdt x 10(-4) (cm) was found to be 7.28 cm for the shrimp tested. Swimming to fatigue leads to severe loss of body mass, hemolymph total protein concentration, and hemolymph glucose level in L. vannamei (P < 0.05). Furthermore, these decreases and swimming speed showed significantly polynomial relationships (P < 0.05). The results suggest that the power model fits well to the observed endurance estimates and the SAI is a good index to quantitatively describe the overall swimming ability of L. vannamei. Furthermore, hemolymph total protein concentration may be used as a rapid and reliable indicator to assess the penaeid shrimps' swimming speed and hence swimming ability.  相似文献   

20.
The aim of the study was to investigate possible modifications caused by hand paddles in the relative contribution of the lift and drag forces of the hand and in the propelling efficiency, during front crawl swimming. Eight female swimmers swam 25 m with maximal intensity without paddles, with small (116 cm(2)) and with large paddles (268 cm(2)). Four cameras operating at 60 Hz were used to record the images and the Ariel Performance Analysis System was used for the digitisation. The results showed that, although during swimming with hand paddles the hand's velocity decreased, the greater propulsive area of the hand paddle caused an increase in the drag, lift, resultant and effective forces of the hand. However, the relative contribution of lift and drag forces on swimming propulsion was not modified, nor was the direction of the resultant force. Hand paddles also increased the propelling efficiency, the stroke length and the swimming velocity, mainly because of the larger propulsive areas of the hand in comparison with free swimming. However, the significant decrease of the stroke rate, might argue the effectiveness of hand paddle training, particularly when large paddles are used in front crawl swimming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号