首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the effects of urea and its derivatives on the ATPase activity and on the in vitro motility of chicken skeletal muscle actomyosin. Mg-ATPase rate of myosin subfragment-1 (S1) is increased by 4-fold by 0.3 M 1,3-diethylurea (DEU), but it is unaffected by urea, thiourea, and 1,3-dimethylurea at ≤ 1 M concentration. Thus, we further examine the effects of DEU in comparison to those of urea as reference. In in vitro motility assay, we find that in the presence of 0.3 M DEU, the sliding speeds of actin filaments driven by myosin and heavy meromyosin (HMM) are significantly decreased to 1/16 and 1/6.6, respectively, compared with the controls. However, the measurement of the actin-activated ATPase activity of HMM shows that the maximal rate, Vmax, is almost unchanged with DEU. Thus, the myosin-driven sliding motility of actin filaments is significantly impeded in the presence of 0.3 M DEU, whereas the cyclic interaction of myosin with F-actin occurs during the ATP turnover, the rate of which is close to that without DEU. In contrast to DEU, 0.3 M urea exhibits only modest effects on both actin-activated ATPase and sliding motility of actomyosin. Thus, DEU has the effect of uncoupling the sliding motility of actomyosin from its ATP turnover.  相似文献   

2.
Biosensors would benefit from further miniaturization, increased detection rate and independence from external pumps and other bulky equipment. Whereas transportation systems built around molecular motors and cytoskeletal filaments hold significant promise in the latter regard, recent proof-of-principle devices based on the microtubule-kinesin motor system have not matched the speed of existing methods. An attractive solution to overcome this limitation would be the use of myosin driven propulsion of actin filaments which offers motility one order of magnitude faster than the kinesin-microtubule system. Here, we realized a necessary requirement for the use of the actomyosin system in biosensing devices, namely covalent attachment of antibodies to actin filaments using heterobifunctional cross-linkers. We also demonstrated consistent and rapid myosin II driven transport where velocity and the fraction of motile actin filaments was negligibly affected by the presence of antibody-antigen complexes at rather high density (>20 µm−1). The results, however, also demonstrated that it was challenging to consistently achieve high density of functional antibodies along the actin filament, and optimization of the covalent coupling procedure to increase labeling density should be a major focus for future work. Despite the remaining challenges, the reported advances are important steps towards considerably faster nanoseparation than shown for previous molecular motor based devices, and enhanced miniaturization because of high bending flexibility of actin filaments.  相似文献   

3.
Myosin V motor proteins: marching stepwise towards a mechanism   总被引:6,自引:0,他引:6  
Mammalian myosin V motors transport cargo processively along actin filaments. Recent biophysical and structural studies have led to a detailed understanding of the mechanism of myosin V, making it perhaps the best understood cytoskeletal motor. In addition to describing the mechanism, this review will illustrate how "dynamic" single molecule measurements can synergize with "static" protein structural studies to produce amazingly clear information on the workings of a nanometer-scale machine.  相似文献   

4.
《FEBS letters》2014,588(24):4754-4760
We determined the crystal structure of the motor domain of human non-muscle myosin 2B (NM-2B) in a nucleotide-free state and at a resolution of 2.8 Å. The structure shows the motor domain with an open active site and the large cleft that divides the 50kDa domain in a closed state. Compared to other rigor-like myosin motor domain structures, our structure shows subtle but significant conformational changes in regions important for actin binding and mechanochemical coupling. Moreover, our crystal structure helps to rationalize the impact of myosin, heavy chain 9 (MYH9)-related disease mutations Arg709Cys and Arg709His on the kinetic and functional properties of NM-2B and of the closely related non-muscle myosin 2A (NM-2A).  相似文献   

5.
Myosin X is a molecular motor that is adapted to select bundled actin filaments over single actin filaments for processive motility. Its unique form of motility suggests that myosin X's stepping mechanism takes advantage of the arrangement of actin filaments and the additional target binding sites found within a bundle. Here we use fluorescence imaging with one-nanometer accuracy to show that myosin X takes steps of ∼18 nm along a fascin-actin bundle. This step-size is well short of the 36-nm step-size observed in myosin V and myosin VI that corresponds to the actin pseudohelical repeat distance. Myosin X is able to walk along bundles with this step-size if it straddles two actin filaments, but would be quickly forced to spiral into the constrained interior of the bundle if it were to use only a single actin filament. We also demonstrate that myosin X takes many sideways steps as it walks along a bundle, suggesting that it can switch actin filament pairs within the bundle as it walks. Sideways steps to the left or the right occur on bundles with equal frequency, suggesting a degree of lateral flexibility such that the motor's working stroke does not bias it to the left or to the right. On single actin filaments, we find a broad mixture of 10-20-nm steps, which again falls short of the 36-nm actin repeat. Moreover, the motor leans to the right as it walks along single filaments, which may require myosin X to adopt strained configurations. As a control, we also tracked myosin V stepping along actin filaments and fascin-actin bundles. We find that myosin V follows a narrower path on both structures, walking primarily along one surface of an actin filament and following a single filament within a bundle while occasionally switching to neighboring filaments. Together, these results delineate some of the structural features of the motor and the track that allow myosin X to recognize actin filament bundles.  相似文献   

6.
We recently refined the in vitro motility assay for studies of actomyosin function to achieve rectified myosin induced sliding of actin filaments. This paves the way, both for detailed functional studies of actomyosin and for nanotechnological applications. In the latter applications it would be desirable to use actin filaments for transportation of cargoes (e.g., enzymes) between different predetermined locations on a chip. We here describe how single quantum dot labelling of isolated actin filaments simultaneously provides handles for cargo attachment and bright and photostable fluorescence labels facilitating cargo detection and filament tracking. Labelling was achieved with preserved actomyosin function using streptavidin-coated CdSe quantum dots (Qdots). These nanocrystals have several unique physical properties and the present work describes their first use for functional studies of isolated proteins outside the cell. The results, in addition to the nanotechnology developments, open for new types of in vitro assays of isolated biomolecules.  相似文献   

7.
The actin cytoskeleton is an active gel which constantly remodels during cellular processes such as motility and division. Myosin II molecular motors are involved in this active remodeling process and therefore control the dynamic self-organization of cytoskeletal structures. Due to the complexity of in vivo systems, it is hard to investigate the role of myosin II in the reorganization process which determines the resulting cytoskeletal structures. Here we use an in vitro model system to show that myosin II actively reorganizes actin into a variety of mesoscopic patterns, but only in the presence of bundling proteins. We find that the nature of the reorganization process is complex, exhibiting patterns and dynamical phenomena not predicted by current theoretical models and not observed in corresponding passive systems (excluding motors). This system generates active networks, asters and even rings depending on motor and bundling protein concentrations. Furthermore, the motors generate the formation of the patterns, but above a critical concentration they can also disassemble them and even totally prevent the polymerization and bundling of actin filaments. These results may suggest that tuning the assembly and disassembly of cytoskeletal structures can be obtained by tuning the local myosin II concentration/activity.  相似文献   

8.
Kinesins and myosins transport cargos to specific locations along microtubules and actin filaments, respectively. The relative contribution of the two transport systems for cell polarization varies extensively in different cell types, with some cells relying exclusively on actin-based transport while others mainly use microtubules. Using fission yeast, we asked whether one transport system can substitute for the other. In this organism, microtubules and actin cables both contribute to polarized growth by transporting cargos to cell poles, but with distinct roles: microtubules transport landmarks to label cell poles for growth and actin assembly but do not directly contribute to the growth process [1]. Actin cables serve as tracks for myosin V delivery of growth vesicles to cell poles [ [2] , [3] and [4] ]. We engineered a chimera between the motor domain of the kinesin 7 Tea2 and the globular tail of the myosin V Myo52, which we show transports Ypt3, a myosin cargo receptor, to cell poles along microtubules. Remarkably, this chimera restores polarized growth and viability to cells lacking actin cables. It also bypasses the normal microtubule-dependent marking of cell poles for polarized growth, but not for other functions. Thus, a synthetic motor protein successfully redirects cargos along a distinct cytoskeletal route.

Video Abstract


9.
All eukaryotic cells contain large numbers of motor proteins (kinesins, dyneins and myosins), each of which appears to carry out a specialized force-generating function within the cell. They are known to have roles in muscle contraction, ciliary movement, organelle and vesicle transport, mitosis and cytokinesis. These motor proteins operate on different cytoskeletal filaments; myosins move along actin filaments, and kinesins and dyneins along microtubules. Recently published crystal structures of the motor domains of two members of the kinesin superfamily reveal that they share the same overall fold that is also found at the core of the larger myosin motor. This suggests that they may share a common mechanism as well as a common ancestry.  相似文献   

10.
Myosin II motors play several important roles in a variety of cellular processes, some of which involve active assembly/disassembly of cytoskeletal substructures. Myosin II motors have been shown to function in actin bundle turnover in neuronal growth cones and in the recycling of actin filaments during cytokinesis. Close examination had shown an intimate relationship between myosin II motor adenosine triphosphatase activity and actin turnover rate. However, the direct implication of myosin II in actin turnover is still not understood. Herein, we show, using high-resolution cryo-transmission electron microscopy, that myosin II motors control the turnover of actin bundles in a concentration-dependent manner in vitro. We demonstrate that disassembly of actin bundles occurs through two main stages: the first stage involves unbundling into individual filaments, and the second involves their subsequent depolymerization. These evidence suggest that, in addition to their “classical” contractile abilities, myosin II motors may be directly implicated in active actin depolymerization. We believe that myosin II motors may function similarly in vivo (e.g., in the disassembly of the contractile ring by fine tuning the local concentration/activity of myosin II motors).  相似文献   

11.
Summary Changes in the contractile apparatus of denervated rat soleus muscles were investigated during the course of reinnervation.As observed earlier, in the course of denervation atrophy the ratio of myosin to actin filaments decreases because myosin filaments disappear faster than actin filaments (Jakubiec-Puka et al. 1981 a). After reinnervation the amount of myosin filaments and myosin heavy chains (myosin HC) in the muscle increased during the first few days; the increment of actin content was negligible. The proportion of myosin HC to actin remained lower than normal for about 30 days. The excess of actin filaments frequently observed in the newly-formed myofibrils reflects this disproportion.The results show a lability of myosin and suggest some cytoskeletal role for actin filaments.  相似文献   

12.
Septin forms a conserved family of cytoskeletal GTP-binding proteins that have diverse roles in protein scaffolding, vesicle trafficking and cytokinesis. There are 14 mammalian septin isoforms and these isoforms assemble into hetero-oligomeric rod-shaped complexes and these short filaments are the basal units to construct higher-order structures such as longer filaments, rings, gauzes or hourglasses. Septin expressed in a eukaryotic expression system forms various structures such as bundles, sheets, helixes, and rings. Septin expressed in bacteria formed hexameric short filaments and single or parallel long filaments, but no such higher order structures were observed so far. In a previous study, we showed maturation-dependent localization of septin isoforms to the lipid raft fraction of rat brain. In this study, we attempted further purification of raft-localized septin isoforms. Repeated cycles of extraction with high MgCl2 solution and precipitation under low ionic solution were combined with several column procedures. The obtained fraction contained several septin isoforms and showed rings of bundled filaments with a diameter of ~0.4 μm. Several non-septin proteins were also detected in the fraction. We also attempted expression of septin isoforms in bacteria and found that the expressed septin complexes formed bundles of filaments. In addition to linear and curled filaments, circular bundles of thin filaments with a diameter of ~0.6 μm were also observed. These results suggest that the curvature of the bundles of septin filaments may be regulated by the regulatory factor(s) in the lipid raft.  相似文献   

13.
Actin filaments and photoreceptor membrane turnover   总被引:1,自引:0,他引:1  
The shape and turnover of photoreceptor membranes appears to depend on associated actin filaments. In dipterans, the photoreceptor membrane is microvillar. It is turned over by the addition of new membrane at the bases of the microvilli and by subsequent shedding, mostly from the distal ends. Each microvillus contains actin filaments as a component of its cytoskeletal core. Two myosin I-like proteins co-localize with the actin filaments. It is suggested that one of the myosin I-like proteins might be linked to the microvillar membrane. By interacting with the actin filaments, this motor should move the membrane of a microvillus in a distal direction, thus providing a possible mechanism for the turnover of the membrane. A vertebrate photoreceptor cell contains a small cluster of actin filaments in its connecting cilium at the site where new transductive disk membranes are formed. Disruption of the actin filaments perturbs disk morphogenesis. The most likely explanation for this perturbation is that the process of initiating a new disk is inhibited. Conventional myosin (myosin II) is found in the connecting cilium with the same distribution as actin. A simple model is proposed to illustrate how the actin-myosin system of the connecting cilium might function to initiate the morphogenesis of a disk membrane.  相似文献   

14.
This is a review of the evidence that the cytoplasmic contractile proteins function as a cytoskeletal system inthe cytoplasmic matrix. Biochemical experiments show that cycoplasmic actin filaments can form a solid gel under conditions likely to exist in living cells. The actin filaments are associated with other proteins which may stabilize the gel and which are involved with motile force generation like myosin. Ultrastructural studies show that actin filaments are difficult to preserve, but that under stabilizing conditions networks of actin filaments are found throughout the cytoplasmic matrix.  相似文献   

15.
We explored the potential of contractile proteins, actin and myosin, as biosensors of solutions containing mercuric ions. We demonstrate that the reaction of HgCl2 with myosin rapidly inhibits actin-activated myosin ATPase activity. Mercuric ions inhibit the in vitro analog of contraction, namely the ATP-initiated superprecipitation of the reconstituted actomyosin complex. Hg reduces both the rate and extent of this reaction. Direct observation of the propulsive movement of actin filaments (10 nm in diameter and 1 microm long) in a motility assay driven by a proteolytic fragment of myosin (heavy meromyosin or HMM) is also inhibited by mercuric ions. Thus, we have demonstrated the biochemical, biophysical and nanotechnological basis of what may prove to be a useful nano-device.  相似文献   

16.
Cow Purkinje fibers contain a population of free cytoplasmic filaments which consistently differ in ultrastructural appearance from actin and myosin filaments, irrespective of preparation technique. The fixation and staining techniques, however, influenced the filament diameter, which was found to be 7.4--9.5 nm for filaments in plastic-embedded material, and 7.0 nm in cryo-sectioned material, thus intermediate as compared to actin and myosin filaments. Cross-sectional profiles suggested that the intermediate-sized filaments are composed of four subfilaments. To provide a basis for further biochemical investigations on the filaments, extraction procedures were carried out to remove other cell organelles. Electron microscopy showed that undulating bundles of intermediate filaments converging towards desmosomes still remained, after the extractions, together with Z-disk material. In spite of the extensive extraction, the shape of the individual cells and the assemblies of cell bundles remained intact. This confirms that the intermediate filaments of cow Purkinje fibers together with desmosomes do in fact have a cytoskeletal function. On account of (a) the cytoskeletal function of the filaments, (b) the similarities to the smooth muscle "100-A filament" protein subunit skeletin, and (c) the inadequate and confusing existing terminology, we suggest that the filaments be named "skeletin filaments."  相似文献   

17.
Axonal transport in neurons has been shown to be microtubule dependent, driven by the molecular motor proteins kinesin and dynein. However, organelles undergoing fast transport can often pause or rapidly change directions without apparent dissociation from their transport tracks. Cytoskeletal polymers such as neurofilaments and microtubules have also been shown to make infrequent but rapid movements in axons indicating that their transport is likely to involve molecular motors. In addition, neurons have multiple compartments that are devoid of microtubules where transport of organelles is still seen to occur. These areas are rich in other cytoskeletal polymers such as actin filaments. Transported organelles have been shown to associate with multiple motor proteins including myosins. This suggests that nonmicrotubule-based transport may be myosin driven. In this review we will focus our attention on myosin motors known to be present in neurons and evaluate the evidence that they contribute to transport or other functions in the different compartments of the neuron.  相似文献   

18.
Processive cytoskeletal motors from the myosin, kinesin, and dynein families walk on actin filaments and microtubules to drive cellular transport and organization in eukaryotic cells. These remarkable molecular machines are able to take hundreds of successive steps at speeds of up to several microns per second, allowing them to effectively move vesicles and organelles throughout the cytoplasm. Here, we focus on single-molecule fluorescence techniques and discuss their wide-ranging applications to the field of cytoskeletal motor research. We cover both traditional fluorescence and sub-diffraction imaging of motors, providing examples of how fluorescence data can be used to measure biophysical parameters of motors such as coordination, stepping mechanism, gating, and processivity. We also outline some remaining challenges in the field and suggest future directions.  相似文献   

19.
Non-muscle cells express multiple myosin-II motor proteins myosin IIA, myosin IIB and myosin IIC transcribed from different loci in the human genome. Due to a significant homology in their sequences, these ubiquitously expressed myosin II motor proteins are believed to have overlapping cellular functions, but the mechanistic details are not elucidated. The present study uncovered a mechanism that coordinates the distinctly localized myosin IIA and myosin IIB with unexpected opposite mechanical roles in maneuvering lamellipodia extension, a critical step in the initiation of cell invasion, spreading, and migration. Myosin IIB motor protein by localizing at the front drives lamellipodia extension during cell spreading. On the other hand, myosin IIA localizes next to myosin IIB and attenuates or retracts lamellipodia extension. Myosin IIA and IIB increase cell adhesion by regulating focal contacts formation in the spreading margins and central part of the spreading cell, respectively. Spreading cells expressing both myosin IIA and myosin IIB motor proteins display an organized actin network consisting of retrograde filaments, arcs and central filaments attached to focal contacts. This organized actin network especially arcs and focal contacts formation in the spreading margins were lost in myosin IIÂ cells. Surprisingly, myosin IIB̂ cells displayed long parallel actin filaments connected to focal contacts in the spreading margins. Thus, with different roles in the regulation of the actin network and focal contacts formation, both myosin IIA and IIB determine the fate of lamellipodia extension during cell spreading.  相似文献   

20.
Cortical actin networks are highly dynamic and play critical roles in shaping the mechanical properties of cells. The actin cytoskeleton undergoes significant reorganization in many different contexts, including during directed cell migration and over the course of the cell cycle, when cortical actin can transition between different configurations such as open patched meshworks, homogeneous distributions, and aligned bundles. Several types of myosin motor proteins, characterized by different kinetic parameters, have been involved in this reorganization of actin filaments. Given the limitations in studying the interactions of actin with myosin in vivo, we propose stochastic agent-based models and develop a set of data analysis measures to assess how myosin motor proteins mediate various actin organizations. In particular, we identify individual motor parameters, such as motor binding rate and step size, that generate actin networks with different levels of contractility and different patterns of myosin motor localization, which have previously been observed experimentally. In simulations where two motor populations with distinct kinetic parameters interact with the same actin network, we find that motors may act in a complementary way, by tuning the actin network organization, or in an antagonistic way, where one motor emerges as dominant. This modeling and data analysis framework also uncovers parameter regimes where spatial segregation between motor populations is achieved. By allowing for changes in kinetic rates during the actin-myosin dynamic simulations, our work suggests that certain actin-myosin organizations may require additional regulation beyond mediation by motor proteins in order to reconfigure the cytoskeleton network on experimentally-observed timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号