首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PHR1(PHOSPHATE STARVATION RESPONSE1)plays key roles in the inorganic phosphate(Pi)starvation response and in Pi deficiency-induced anthocyanin biosynthesis in plants. However, the post-translational regulation of PHR1 is unclear,and the molecular basis of PHR1-mediated anthocyanin biosynthesis remains elusive. In this study, we determined that MdPHR1 was essential for Pi deficiency-induced anthocyanin accumulation in apple(Malus × domestica). MdPHR1 interacted with MdWRKY75, a positive regulator...  相似文献   

2.
3.
4.
ABSTRACT

Macroautophagy/autophagy is an evolutionarily conserved cellular degradation and recycling process that is tightly regulated by external stimuli, diet, and stress. Our recent findings suggest that in C. elegans, a nutrient sensing pathway mediated by MTORC2 (mechanistic target of rapamycin kinase complex 2) and its downstream effector kinase SGK-1 (serum- and glucocorticoid-inducible kinase homolog 1) suppresses autophagy, involving mitophagy. Induced autophagy/mitophagy in MTORC2-deficient animals slows down development and impairs reproduction independently of the SGK-1 effectors DAF-16/FOXO and SKN-1/NFE2L2/NRF2. In this punctum, we discuss how TORC2-SGK-1 signaling might regulate autophagic turnover and its impact on mitochondrial homeostasis via linking mitochondria-derived reactive oxygen species (mtROS) production to mitophagic turnover.  相似文献   

5.
6.
7.
8.
Roots are fundamental for plants to adapt to variable environmental conditions.The development of a robust root system is orchestrated by numerous genetic determinants and,among them,the MADS-box gene ANR1 has garnered substantial attention.Prior research has demonstrated that,in chrysanthemum,CmANR1positively regulates root system development.Nevertheless,the upstream regulators involved in the CmANR1-mediated regulation of root development remain unidentified.In this study,we successfully iden...  相似文献   

9.
10.
Cotyledon opening is a key morphological change that occurs in seedlings during de-etiolation. Brassinosteroids (BRs) inhibit the opening of cotyledons in darkness while light promotes cotyledon opening. The molecular regulation of the interplay between light and BR to regulate cotyledon opening is not well understood. Here, we show the B-box protein BBX32 negatively regulates light signaling and promotes BR signaling to inhibit cotyledon opening in Arabidopsis (Arabidopsis thaliana). BBX32 is highly expressed in the cotyledons of seedlings during de-etiolation. bbx32 and 35S:BBX32 seedlings exhibit enhanced and reduced cotyledon opening, respectively, in response to both light and brassinazole treatment in dark, suggesting that BBX32 mediates cotyledon opening through both light and BR signaling pathways. BBX32 expression is induced by exogenous BR and is upregulated in bzr1-1D (BRASSINAZOLE RESISTANT1-1D). Our in vitro and in vivo interaction studies suggest that BBX32 physically interacts with BZR1. Further, we found that PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) interacts with BBX32 and promotes BR-mediated cotyledon closure. BBX32, BZR1, and PIF3 regulate the expression of common target genes that modulate the opening and closing of cotyledons. Our work suggests BBX32 integrates light and BR signals to regulate cotyledon opening during de-etiolation.  相似文献   

11.
12.
13.
? Premise of the study: While plants show lineage-specific differences in metabolite composition, plant metabolites are also known to vary in response to the environment. The extent to which these different determinants of metabolite composition are mutually independent and recognizable is unknown. Moreover, the extent to which the metabolome can reconcile evolutionary constraint with the needs of the plant for rapid environmental response is unknown. We investigated these questions in plant species representing different phylogenetic lineages and growing in different subantarctic island environments. We studied their amines-metabolites involved in plant response to environmental conditions. ? Methods: Nine species were sampled under high salinity, water saturation, and altitude on the Kerguelen Islands. Their profiles of free aromatic, aliphatic, and acetyl-conjugated amines were determined by HPLC. We related amine composition to species and environment using generalized discriminant analyses. ? Key results: Amine composition differed significantly between species within the same environment, and the differences reflected phylogenetic positions. Moreover, across all species, amine metabolism differed between environments, and different lineages occupied different absolute positions in amine/environment space. Interestingly, all species had the same relative shifts in amine composition between environments. ? Conclusion: Our results indicate a similar response of amine composition to abiotic environments in distantly related angiosperms, suggesting environmental flexibility of species is maintained despite major differences in amine composition among lineages. These results aid understanding of how in nature the plant metabolome integrates ecology and evolution, thus providing primordial information on adaptive mechanisms of plant metabolism to climate change.  相似文献   

14.
15.
Apple necrotic mosaic virus (ApNMV) is highly associated with the occurrence of apple mosaic disease in China. However, ApNMV–host interactions and defence mechanisms of host plants against this virus are poorly studied. Here, we report that nitrate treatment restrains ApNMV genomic RNA accumulation by destabilizing viral replication protein 1a through the MdBT2-mediated ubiquitin-proteasome pathway. MdBT2, a nitrate-responsive BTB/TAZ domain-containing protein, was identified in a yeast two-hybrid screen of an apple cDNA library using viral protein 1a as bait, and 1a was further confirmed to interact with MdBT2 both in vivo and in vitro. It was further verified that MdBT2 promoted the ubiquitination and degradation of viral protein 1a through the ubiquitin-proteasome pathway in an MdCUL3A-independent manner. Viral genomic RNA accumulation was reduced in MdBT2-overexpressing transgenic apple leaves but enhanced in MdBT2-antisense leaves compared to the wild type. Moreover, MdBT2 was found to interfere with the interaction between viral replication proteins 1a and 2apol by competitively interacting with 1a. Taken together, our results demonstrate that nitrate-inducible MdBT2 functions as a limiting factor in ApNMV viral RNA accumulation by promoting the ubiquitination and degradation of viral protein 1a and interfering with interactions between viral replication proteins.  相似文献   

16.
Ethylene biosynthesis is directed by a family of 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS) that convert S -adenosyl- l -methionine to the immediate precursor ACC. Members of the type-2 ACS subfamily are strongly regulated by proteolysis with various signals stabilizing the proteins to increase ethylene production. In Arabidopsis, this turnover is mediated by the ubiquitin/26 S proteasome system, using a broad complex/tramtrack/bric-a-brac (BTB) E3 assembled with the ETHYLENE OVERPRODUCER 1 (ETO1) BTB protein for target recognition. Here, we show that two Arabidopsis BTB proteins closely related to ETO1, designated ETO1-like (EOL1) and EOL2, also negatively regulate ethylene synthesis via their ability to target ACSs for breakdown. Like ETO1, EOL1 interacts with type-2 ACSs (ACS4, ACS5 and ACS9), but not with type-1 or type-3 ACSs, or with type-2 ACS mutants that stabilize the corresponding proteins in planta . Whereas single and double mutants affecting EOL1 and EOL2 do not show an ethylene-related phenotype, they exaggerate the effects caused by inactivation of ETO1 , and further increase ethylene production and the accumulation of ACS5 in eto1 plants. The triple eto1 eol1 eol2 mutant phenotype can be effectively rescued by the ACS inhibitor aminoethoxyvinylglycine, and by silver, which antagonizes ethylene perception. Together with hypocotyl growth assays showing that the sensitivity and response kinetics to ethylene are normal, it appears that ethylene synthesis, but not signaling, is compromised in the triple mutant. Collectively, the data indicate that the Arabidopsis BTB E3s assembled with ETO1, EOL1 and EOL2 work together to negatively regulate ethylene synthesis by directing the degradation of type-2 ACS proteins.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号