首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Intensive practices in forest soils result in dramatic nitrogen (N) losses, particularly ammonia (NH3) volatilization, to adjacent environmental areas. A soil column experiment was conducted to evaluate the effect of bamboo biochar on NH3 volatilization from tea garden and bamboo forest soils. The results showed that biochar amendment effectively reduced NH3 volatilization from tea garden and bamboo forest soil by 79.2% and 75.5%, respectively. The soil pH values increased by 0.53-0.61 units after biochar application. The NH4+-N and total N of both soils were 13.8-29.7% and 34.0-41.9% higher under the biochar treatments than under the control treatment, respectively. In addition, the soil water contents of the two biochar-amended soils were significantly higher (P < 0.05), by 10.7-12.5%, than that of the soils without biochar amendment. Therefore, biochar mitigates NH3 volatilization from the tested forest soils, which was due to the increases in soil NH4+-N, total N and water contents after biochar amendment. Our main findings suggest that biochar addition is an effective management option for sustainable forest management.  相似文献   

2.

Aims

Rice is known as an ammonium (NH4 +)-tolerant species. Nevertheless, rice can suffer NH4 + toxicity, and excessive use of nitrogen (N) fertilizer has raised NH4 + in many paddy soils to levels that reduce vegetative biomass and yield. Examining whether thresholds of NH4 + toxicity in rice are related to nitrogen-use efficiency (NUE) is the aim of this study.

Methods

A high-NUE (Wuyunjing 23, W23) and a low-NUE (Guidan 4, GD) rice cultivar were cultivated hydroponically, and growth, root morphology, total N and NH4 + concentration, root oxygen consumption, and transmembrane NH4 + fluxes in the root meristem and elongation zones were determined.

Results

We show that W23 possesses greater capacity to resist NH4 + toxicity, while GD is more susceptible. We furthermore show that tissue NH4 + accumulation and futile NH4 + cycling across the root-cell plasma membrane, previously linked to inhibited plant development under elevated NH4 +, are more pronounced in GD. NH4 + efflux in the root elongation zone, measured by SIET, was nearly sevenfold greater in GD than in W23, and this was coupled to strongly stimulated root respiration. In both cultivars, root growth was affected more severely by high NH4 + than shoot growth. High NH4 + mainly inhibited the development of total root length and root area, while the formation of lateral roots was unaffected.

Conclusions

It is concluded that the larger degree of seedling growth inhibition in low- vs. high-NUE rice genotypes is associated with significantly enhanced NH4 + cycling and tissue accumulation in the elongation zone of the root.  相似文献   

3.
Field experiments were conducted under flooded soil conditions using Maahas clay amended with urea and rice straw-sesbania mixtures during the wet and dry seasons. Parallel laboratory incubation tests were done. The objectives were 1) to determine N mineralization patterns and establish the relationship between mineralization parameters and either N availability or grain yield, and 2) to correlate the results of organic N mineralization studies in the laboratory with data from field experiments. The N mineralization patterns of flooded soils in the laboratory followed a logistic function. In laboratory studies, mineralization potential was positively correlated with extractable soil NH4 +-N at the end of the incubation period (cumulative available N). Likewise, mineralization potential calculated from laboratory studies was positively correlated with N uptake and grain yield from field studies. Extractable (NH4 ++NO3 )-N in the field correlated positively with extractable NH4 +-N in the laboratory. The extractable NH4 +-N from laboratory incubations at 14 days after transplanting, panicle initiation, and maturity was also highly and positively correlated with grain yield from field experiments.  相似文献   

4.
A laboratory microcosm experiment was established to study whether the role of Cognettia sphagnetorum (Enchytraeidae) in affecting Scots pine (Pinus sylvestris) seedling growth is influenced by wood ash-amendment, i.e., neutralisation of the raw humus soil. Coniferous forest soil, inoculated with soil microbes and nematodes, was either treated with wood ash or left as ash-free control. Wood ash (corresponding to an amount of 5000 kg ha–1) was either spread on the soil surface or mixed into the soil. Enchytraeid and pine seedling biomass, abundance of nematodes, and water leachable NH4 +-N and NO3 -N were measured 26 and 51 weeks after initiation of the experiment and root length and N concentration of needles were measured 51 weeks after initiation of the experiment. Wood ash when mixed into the soil, reduced the biomass of C. sphagnetorum. Nematodes were unaffected by the treatments. In the ash-free soils C. sphagnetorum had little influence on pine growth, but it did decrease root length and root to shoot ratio. In the absence of enchytraeids wood ash decreased pine biomass production and root length. However, the presence of enchytraeids in the ash-treated soil compensated the ash-induced negative effects on the pine performance. Enchytraeids increased and wood ash decreased water leachable NH4 +-N in the presence but not in the absence of enchytraeids, while water leachable NO3 -N was not affected by the treatments. It was concluded that C. sphagnetorum can be important in ensuring nutrient cycling and plant growth in situations when an ecosystem encounters disturbances.  相似文献   

5.
Arbuscular mycorrhizal (AM) fungi have beneficial effects on host plants, but their growth is influenced by various factors. This study was carried out to analyze the variation of AM fungi in soils and roots of peach (Prunus persica L. var. Golden Honey 3, a yellow-flesh variety) trees in different soil layers (0–40 cm) and their correlation with soil properties. The peach tree could be colonized by indigenous AM fungi (2.2–8.7 spores/g soil and 1.63–3.57 cm hyphal length/g soil), achieving 79.50–93.55% of root AM fungal colonization degree. The mycorrhizal growth, root sugars, soil three glomalins, NH4+-N, NO3-N, available P and K, and soil organic matter (SOM) had spatial heterogeneity. Soil spores, but not soil hyphae contributed to soil glomalin, and soil glomalin also contributed to SOM. There was a significant correlation of soil hyphae with spore density, soil NO3-N, and SOM. Root mycorrhiza was positively correlated with spore density, NH4+-N, NO3-N, and easily extractable glomalin-related soil protein. Notably, spore density positively correlated with NO3-N, available K, SOM, and root fructose and glucose, while negatively correlated with available P and root sucrose. These findings concluded that mycorrhiza of peach showed spatial distribution, and soil properties mainly affected/altered based on the soil spore density.  相似文献   

6.
A sophisticated soil microcosm system and 15N-labeled urea were used to investigate nitrogen (N) use efficiency and soil N dynamics in a rice monoculture system in two successive seasons. Topsoil (0 cm?C20 cm) and subsoil (20 cm?C50 cm) samples were collected from a traditional double rice cropping field in the Jiangxi Province, China, and these soil samples were derived from Quaternary red clay. Treatments were randomly assigned with two irrigation regimes and three N application rates (no application control, 80% traditional rate and 100% traditional rate noted as N0, N1 and N2, respectively). The levels of 15N recovery of plants, 15N and N remaining in soil were determined. Moreover, the N dynamic of soil solution from different layers of the soil profile was surveyed. The results showed that the effects of irrigation management and N application rate varied in different rice growing seasons. Irrigation regimes had remarkable effects on grain yield and chemical 15N fertilizers (CF-15N) uptake. When compared to flood irrigation (FI), the shallow water depth with wetting and drying (WD) increased grain yield up to 5.7%?C20%. Although the highest grain yield was obtained with reduced N application level, both N apparent recovery (NAR) and 15N use efficiency (the percentage of plant N uptake derived from applied N, %Ndfan) significantly decreased with increasing N inputs. However, the interaction between irrigation management and N application rate on grain yield and N use efficiency (NUE) of CF-15N were not significant. A survey of soil solutions every 5 days indicated that NH 4 + -N was the main residual form of N, and high NH 4 + -N leaching was observed. When compared to FI, WD decreased vertical NH 4 + -N and TN leaching, especially at 10?C50 cm depths of soil profile in the second season. NH 4 + -N was the main N residual form in the soil profile. Therefore, in this study, the WD irrigation regime and reduced rate (N1) was the optimal irrigation and fertilizer management strategy to increase the NUE of CF-N, increase the after effects of CF-15N, decrease leaching loss of CF-15N and minimize the shallow groundwater pollution risk, which were all beneficial for the ecological environment.  相似文献   

7.
The effect of incorporating cattle slurry in soil, either by mixing or by simulated injection into a hollow in soil, on the ryegrass uptake of total N and 15NH4 +-N was determined in three soils of different texture. The N accumulation in Italian ryegrass (Lolium multiflorum L.) from slurry N and from an equivalent amount of NH4 +-N in (15NH4) SO4 (control) was measured during 6 months of growth in pots. After this period the total recovery of labelled N in the top soil plus herbage was similar in the slurry and the control treatments. This indicated that gaseous losses from slurry NH4 +-N were insignificant. Consequently, the availability of slurry N to plants was mainly influenced by the mineralization-immobilization processes. The apparent utilization of slurry NH4 +-N mixed into soil was 7%, 14% and 24% lower than the utilization of (NH4)2SO4-N in a sand soil, a sandy loam soil and a loam soil, respectively. Thus, the net immobilization of N due to slurry application increased with increasing soil clay content, whereas the recovery in plants of 15N-labelled NH4 +-N from slurry was similar on the three soils. A parallel incubation experiment showed that the immobilization of slurry N occurred within the first week after slurry application. The incorporation of slurry N by simulated injection increased the plant uptake of both total and labelled N compared to mixing the slurry into the soil. The apparent utilization of injected slurry NH4 +-N was 7% higher, 8% lower and 4% higher than the utilization of (NH4)2SO4-N in the sand, the sandy loam and the loam soil, respectively. It is concluded that the spatial distribution of slurry in soil influenced the net mineralization of N to the same degree as did the soil type.  相似文献   

8.
王胤  姚瑞玲 《广西植物》2021,41(6):922-929
马尾松属高氮需求树种,然而在苗木培育中马尾松对氮素,尤其是不同形态氮素的需求尚不明确.该文以马尾松组培苗为试验材料,采用基质培养方法,针对硝态氮、铵态氮两种氮素形态均分别设置了2、4、8、16 mmol·L-14个处理,以不添加氮素为对照,对苗木的高径生长、根构型参数(总根长、总表面积、总体积、平均直径和根尖数)以及生...  相似文献   

9.
The chemistry of the lowland rice rhizosphere   总被引:1,自引:1,他引:0  
Kirk  G. J. D.  Begg  C. B. M.  Solivas  J. L. 《Plant and Soil》1993,155(1):83-86
Models and experimental studies of the rhizosphere of rice plants growing in anaerobic soil show that two major processes lead to considerable acidification (1–2 pH units) of the rhizosphere over a wide range of root and soil conditions. One is generation of H+ in the oxidation of ferrous iron by O2 released from the roots. The other is release of H+ from roots to balance excess intake of cations over anions, N being taken up chiefly as NH4 +. CO2 exchange between the roots and soil has a much smaller effect. The zone of root-influence extends a few mm from the root surface. There are substantial differences along the root length and with time. The acidification and oxidation cause increased sorption of NH4 + ions on soil solids, thereby impeding the movement of N to absorbing root surfaces. But they also cause solubilization and enhanced uptake of soil phosphate.  相似文献   

10.

Background and aims

Climate warming, nitrogen (N) deposition and land use change are some of the drivers affecting ecosystem processes such as soil carbon (C) and N dynamics, yet the interactive effects of those drivers on ecosystem processes are poorly understood. This study aimed to understand mechanisms of interactive effects of temperature, form of N deposition and land use type on soil C and N mineralization.

Methods

We studied, in a laboratory incubation experiment, the effects of temperature (15 vs. 25 °C) and species of N deposition (NH4 +-N vs. NO3 ?-N) on soil CO2 efflux, dissolved organic C (DOC) and N (DON), NH4 +-N, and NO3 ?-N concentrations using intact soil columns collected from adjacent forest and grassland ecosystems in north-central Alberta.

Results

Temperature and land use type interacted to affect soil CO2 efflux, concentrations of DON, NH4 +-N and NO3 ?-N in most measurement times, with the higher incubation temperature resulted in the higher CO2 efflux and NH4 +-N concentrations in forest soils and higher DON and NO3 ?-N concentrations in grassland soils. Temperature and land use type affected the cumulative soil CO2 efflux, and DOC, DON, NH4 +-N and NO3 ?-N concentrations. The form of N added or its interaction with the other two factors did not affect any of the C and N cycling parameters.

Conclusions

Temperature and land use type were dominant factors affecting soil C loss, with the soil C in grassland soils more stable and resistant to temperature changes. The lack of short-term effects of the deposition of different N species on soil C and N mineralization suggest that maybe there was a threshold for the N effect to kick in and long-term experiments should be conducted to further elucidate the species of N deposition effects on soil C and N cycling in the studied systems.  相似文献   

11.
NH4 +-fixation by inorganic and organic soil components and crop utilization of fertilier nitrogen was studied in a number of Carbbean soils using15N fertilizers. At moderate rates of nitrogen application, NH4 +-fixation by clays during several-week laboratory incubations was rapid and highly vaiable, ranging from less than 10% to over 70% of the NH4 + added. The 2: 1 lattice types were the most reactive, and the process were almost complete by one week after fertilization. Fixation increased with rate of NH4 +-N application and was higher at elevated temperatures in soils that were allowed to air-dry during incubation. NH4 +-N fixation was more active in the fulvic fractions of the soil organic matter than in the humuc fractions (25–69%vs0–3% of the added NH4 + was fixed in each, respectively). There was little incorporation of fertilizer-N by the N-containing fractions of soil organic matter. Plant uptake of added NH4 +-N in greenhouse pot experiments showed that a greater percentalte of fertilizer-N was taken up by Sudan grass (Sourghum sudanese) at a fertilizer rate of 40 kg NH4 +-N ha?1 than at a rate of 200n kg NH4 +N ha?1. howver, the recovery was low, ranging from 10 to 25 percent of that applied. In field experiments with maize (Zea mays), urea-N was rapidly lost when applied to soils in a wet tropical environment. At normal rates of application (100 kg urea-N ha?1) only about half of the fertilizer was utilized by the crop. Mulches did not significantly affect the fate of added nitrogen; however, mulching did result in increased yields for dry-season cropping, due probably to water conservation effects. There is good indication that for conditions in Trinidad, NH4 +-N is better utilzed and less subject to unidentified losses than is urea. Addition of fertilizer-N resulted in crop uptake of important quantities of native soil nitrogen. The Caribbean Andepts were outstanding in that the showed very little NH4 +-fixation under all experimental conditions and very little tendency for apparent nitrification of added NH4 +-N.  相似文献   

12.
The effects of highly and moderately acid soils on total biomass, biomass partitioning, fine root characteristics and nutritional status of beech seedlings (Fagus sylvatica L.) were studied in a growth chamber experiment. In Haplic Arenosols seedlings grew slowly but equally well without damage symptoms in a highly acid and a moderately acid soil horizon. The moderately acid Ah+Bw-horizon of a Eutric Cambisol was favourable to seedling growth. The fine root development was reduced in the highly acid A+Bw-horizon of a Dystric Cambisol and in the Ah+E-horizon of a Haplic Podzol, the latter of which also caused increased mortality. Seedling growth in the B2-horizon of the Haplic Podzol was vigorous, in spite of a higher level of extractable Al and lower base saturation as compared with the Ah+E-horizon. These results are interpreted in relation to soil acidity, soil Al and nutritional status of the seedlings. We conclude that neither Al-toxicity nor nutrient deficiency cause the damage symptoms observed in the Ah+E-horizon of a Haplic Podzol and the fine root reduction in the A+Bw-horizon of a Dystric Cambisol. The damage symptoms of the PZhA treatment seems to be more the result of H-toxicity or H-related factors other than nutrient shortage or Al-toxicity. Other pH-related toxic factors are discussed.  相似文献   

13.
氮素类型和剂量对寒温带针叶林土壤N2O排放的影响   总被引:1,自引:0,他引:1  
大气氮沉降输入会增加森林生态系统氮素有效性,进而改变土壤N_2O产生与排放,然而有关不同氮素离子(氧化态NO_3~--N与还原态NH_4~+-N)沉降对土壤N_2O排放的影响知之甚少。以大兴安岭寒温带针叶林为研究对象,构建了3种类型(NH_4Cl、KNO_3、NH_4NO_3)和4个施氮水平(0、10、20、40 kg N hm~(-2)a~(-1))的增氮控制试验,利用流动化学分析仪和静态箱-气相色谱法4次/月测定凋落物层和矿质层土壤无机氮含量、土壤-大气界面N_2O净交换通量以及相关环境因子,分析施氮类型和剂量对土壤氮素有效性、土壤N_2O通量的影响探讨氮素富集条件下土壤N_2O通量的环境驱动机制。结果表明:施氮类型和剂量均显著影响土壤无机氮含量,土壤NH_4~+-N的积累效应显著高于NO_3~--N。施氮一致增加寒温带针叶林土壤N_2O排放,NH_4NO_3促进效应最为明显,增幅为442%-677%,高于全球平均水平(134%)。土壤N_2O通量与土壤温度、凋落物层NH_4~+-N含量正相关,且随着施氮水平增加而增加。结果表明大气氮沉降短期内不会导致寒温带针叶林土壤NO_3~--N大量流失,但会显著促进土壤N_2O的排放。此外,外源性NH_4~+和NO_3~-输入对土壤N_2O排放的促进作用具有协同效应,在未来森林生态系统氮循环和氮平衡研究中应该区分对待。  相似文献   

14.
Root plasticity, a trait that can respond to different soil environments, may assist plants to scavenge the nutrients in heterogeneous soils. The objective of this paper is to understand the NH4 +-responsive root architectural changes in rice for better acquisition of Nitrogen (N). Using a root basket method, we examined the variation in root plasticity among diverse rice genotypes grown under hydroponics with different NH4 + concentrations. Significant variation in NH4 +-responsive root architectural changes was observed among rice genotypes studied. From the hydroponic study, five contrasting genotypes with distinct rooting patterns (mono and dimorphic) were selected based on the ratio of deeper roots and rooting pattern value. These distinct genotypes were evaluated in the field to identify the role of root architecture on plant performance under different N applications. Our field results revealed that the dimorphic rooting genotypes enhance the grain yield and shoot biomass under N-deficit conditions than monomorphic root genotypes. We conclude that root architectural plasticity and dimorphic rooting pattern would be helpful to enhance the nitrogen-acquisition efficiency under N-deficit conditions in rice.  相似文献   

15.
16.
With the ongoing commercialization of nanotechnology products, the increasing use of engineered nanoparticles (NPs) could lead potentially to environmental risks. This study investigated the dynamic influences of three iron-based NPs (Fe0, Fe3O4, and Fe2O3) applied into a red soil (RS) and a Wushan soil (WS) with different application rates (2 to 6 g kg?1) on soil physicochemical properties such as pH, dissolved organic carbon (DOC), available ammonium nitrogen (NH4 +-N), available phosphorus (AP), and enzymatic activities. The results showed that the addition of Fe0 NPs increased DOC and available NH4 +-N, but significantly decreased AP, while Fe3O4 and Fe2O3 NPs slightly reduced soil pH in both soils and significantly declined available NH4 +-N in the WS and AP in the RS. No significant difference was observed between the effects of Fe3O4 and Fe2O3 NPs on soil properties except AP in the RS. All iron-based NPs decreased the activities of urease and acid phosphatase in both soils. The effects on soil physicochemical properties, especially available NH4 +-N and AP induced by iron-based NPs, varied greatly with soil types. These results implied that cautions should be paid for the environmental application of iron-based NPs, especially iron oxide NPs in soils.  相似文献   

17.

Background and aims

Physical and chemical soil properties determine local plant conditions and resources, affecting plants’ ability to respond to disturbances. In alpine grasslands, wild boar disturbances occur at different intensities, what may affect differently their soil properties. Alpine soils from five contrasted plant communities were explored within and outside disturbances, accounting for an overall and community scale effect. Additionally, we analysed the effect of disturbance intensity on soil NO3 --N and NH4 +-N.

Methods

Soils were analyzed for physical (bulk density, moisture content and electrical conductivity), and chemical properties (pH, total N and C, oxidizable C, C:N ratio, available K, P, Ca2+, Na+ and Mg2+). Resin bags were used to compare the effect of the disturbance occurrence and intensity on soil NO3 --N and NH4 +-N.

Results

Bulk density, total N and NO3 --N concentration were significantly higher in disturbed areas, while soil moisture, C:N, NH4 +-N, Na+, Mg2+ and Ca2+ concentrations were significantly lower. However, low disturbance intensity reduced NO3 --N and increased NH4 +-N concentrations.

Conclusions

Wild boar occurrence and intensity strongly alter physical and chemical conditions of alpine soils, increasing soil compaction, and altering the availability of N forms. These changes may affect most plant species, thus affecting the structure and dynamics of alpine plant communities.  相似文献   

18.

Background and Aims

The objective of this study was to test the suitability of greenwaste biochar to aid nitrogen (N) retention in rehabilitated bauxite-processing residue sand (BRS).

Methods

Bauxite residue sand was collected from the Alcoa of Australia Pinjarra refinery. The pH of BRS was adjusted to values of 5, 7, 8 and 9 and subsequently amended with different rates (1, 5, 10 and 20 %, w/w) of greenwaste biochar. The loss of N via NH3 volatilization following addition of di-ammonium phosphate (DAP) was determined using an acid trapping method.

Results

At low pH (5), increasing pH rather than adsorption capacity, resulting from biochar addition, caused greater losses of N through volatilization from BRS. In BRS with medium pH (7, 8), increasing adsorption capacity, induced by biochar addition, played the more dominant role in enhancing adsorption of NH 4 + -N /NH3-N and lowering NH3 volatilization. In the BRS with high pH (9), the majority of NH 4 + -N /NH3-N pools was lost via NH3 volatilization due to the strong acid-base reaction at this pH.

Conclusions

It is concluded that the interaction of changes in pH and adsorption capacity induced by greenwaste biochar addition affects the availability and dynamics of NH 4 + -N/ NH3-N in BRS amended with DAP.  相似文献   

19.
Soil nitrogen (N) is a vital source of nutrients for maintaining soil fertility and crop production. However, the effect of biochar application rate on the mechanism of organic N transformation and the contribution of enzyme mineralization is still unclear. Therefore, we conducted two 5-year field experiments in contrasting soils (Phaeozem and Luvisol) with biochar application rate at 0 t hm−2 (CK, 0), 22.5 t hm−2 (D1, 1%), 67.5 t hm−2 (D2, 3%), and 112.5 t hm−2 (D3, 5%) to investigate the potential effects of biochar application rate on soil organic nitrogen (N) turnover and its linkage to enzymatic mineralization in contrasting soil. The results showed that soil organic carbon (SOC) and microbial biomass nitrogen (MBN) contents, microbial biomass carbon to nitrogen ratio (MBC:MBN) and protease activity are significantly influenced by biochar application rate whereas not by soil type. Ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) contents, and dehydrogenase activity are significantly changed by soil type whereas not by biochar application rate. Based on the redundancy analysis, we found that organic N fractions are associated with MBN, SOC, and protease in Phaeozem, but related to protease activity in Luvisol. Our findings indicate that organic N turnover is not only related to the bioavailability of N but also requires carbon substrates in Phaeozem, whereas the transformation of organic N in Luvisol is dominated by enzymatic mineralization as the relatively low level of bioavailable N.  相似文献   

20.

Aims

Ammonia (NH3) can be volatilised from the soil surface following the surface application of nitrogenous fertilisers or ruminant urine deposition. The volatilisation of NH3 is of agronomic and environmental concern, since NH3-N is a form of reactive nitrogen. Ammonia adsorption onto biochar has the potential to mitigate NH3 losses, but to date no studies have examined the potential for reducing NH3 losses when biochar is present in the soil matrix.

Methods

We used 15N-enriched urine to examine the effect of incorporating a wood based low-temperature biochar into soil on NH3 volatilisation. Then, we extracted the urine-treated biochar and compared its potential to act as a plant N source with fresh biochar, while growing ryegrass (Lolium perenne).

Results

The NH3 volatilisation from 15N-labelled ruminant urine, applied to soil, was reduced by 45% after incorporating either 15 or 30?t ha?1 of biochar. When the urine-treated biochar particles were transferred into fresh soil, subsequent plant growth was not affected but the uptake of 15N in plant tissues increased, indicating that the adsorbed-N was plant available.

Conclusions

Our results show that incorporating biochar into the soil can significantly decrease NH3 volatilisation from ruminant urine and that the NH3-N adsorbed onto the biochar is bioavailable. Further studies are now required to assess the temporal dynamics of the N pools involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号