首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resurrection plant Reaumuria soongorica is widespread across Asia, southern Europe, and North Africa and is considered to be a constructive keystone species in desert ecosystems, but the impacts of climate change on this species in desert ecosystems are unclear. Here, the morphological responses of R. soongorica to changes in rainfall quantity (30% reduction and 30% increase in rainfall quantity) and interval (50% longer drought interval between rainfall events) were tested. Stage‐specific changes in growth were monitored by sampling at the beginning, middle, and end of the growing season. Reduced rainfall decreased the aboveground and total biomass, while additional precipitation generally advanced R. soongorica growth and biomass accumulation. An increased interval between rainfall events resulted in an increase in root biomass in the middle of the growing season, followed by a decrease toward the end. The response to the combination of increased rainfall quantity and interval was similar to the response to increased interval alone, suggesting that the effects of changes in rainfall patterns exert a greater influence than increased rainfall quantity. Thus, despite the short duration of this experiment, consequences of changes in rainfall regime on seedling growth were observed. In particular, a prolonged rainfall interval shortened the growth period, suggesting that climate change‐induced rainfall variability may have significant effects on the structure and functioning of desert ecosystems.  相似文献   

2.
段桂芳  单立山  李毅  张正中  张荣 《生态学报》2016,36(20):6457-6464
以西北荒漠生态系统典型植物红砂(Reaumuria soongorica)一年生幼苗为研究对象,利用人工遮雨装置,设置3个降水量梯度(W-、W、W+)和2个降水间隔时间梯度(T、T+)进行模拟试验,研究了不同降水格局下红砂幼苗生长、生物量积累和分配的变化特征。结果表明:(1)降水量增加30%,幼苗株高和基径分别平均增加22.0%和28.0%,延长降水间隔时间其作用更显著,分别平均增加24.57%和32.98%(P0.05);(2)在延长降水间隔时间的同时增加降水量,幼苗地上、地下和总生物量分别显著增加了241.57%、223.95%和236.72%(P0.05),幼苗地上部分的生长优于地下部分;(3)与对照相比,降水量减少30%,幼苗根长平均增加21.0%,根冠比平均显著增加53.73%(P0.05),而各部分生物量差异不显著。  相似文献   

3.
Climate change is significantly altering rainfall patterns globally and will likely cause increases in extreme rainfall events. Grassland systems are particularly vulnerable to these changes as their productivity is strongly mediated by soil water content (SWC). SWC mean and variability are driven by the amount of rainfall received as well as the distribution through time of that rainfall. In this study, we used a model grassland system in a controlled glasshouse experiment to identify whether SWC mean or variability is a stronger driver of productivity. We then examined how extreme rainfall events alter this driver and the resulting effect this has on productivity and biomass allocation under ambient and elevated carbon dioxide (CO2). Rainfall amount was held constant, but distribution through time varied (control, one in 20 years event, one in 100 years event). SWC variability was a stronger driver of productivity (mesocosm biomass) than SWC mean, with increasing extreme rainfall event magnitude resulting in greater SWC variability. Surprisingly, elevated CO2 only had a small effect on these productivity and biomass allocation responses which may be due to the relatively small CO2 difference tested. Our results suggest that distribution of rainfall in time is an important driver of grassland productivity and that increases in extreme rainfall events, for a given total rainfall, will result in reduced grassland productivity.  相似文献   

4.
根系是植物吸收土壤水分和养分的重要器官, 驱动着多个生态系统过程, 该研究揭示了实验增温对根系生物量的影响及机制, 可为气候变暖背景下土壤碳动态和生态系统过程的变化提供理论依据。该研究从已发表的151篇国内外研究论文中收集到611组数据, 通过整合分析(meta-analysis)方法研究了实验增温对根系生物量(根系总生物量、粗根生物量、细根生物量、根冠比)的影响, 并探讨了增温幅度、增温年限、增温方式的影响, 以及根系生物量对增温的响应与本底环境条件(生态系统类型、年平均气温、年降水量、干旱指数)的关系。结果表明: (1)模拟增温使细根生物量显著增加8.87%, 而对根系总生物量、粗根生物量、根冠比没有显著影响; (2)中等强度增温(1-2 ℃)使得细根生物量和根冠比分别提高14.57%和23.63%; 中短期增温实验(<5年)对细根生物量具有促进影响, 而长期增温实验(≥5年)使细根生物量有降低的趋势; 开顶箱增温和红外辐射增温分别使细根生物量显著提高了17.50%和12.16%, 而电缆加热增温使细根生物量和粗根生物量显著降低了23.44%和43.23%; (3)不同生态系统类型对于增温响应不一致, 模拟增温使苔原生态系统细根生物量显著提高了21.03%, 细根生物量对增温的响应与本底年平均气温、年降水量、干旱指数均呈显著负相关关系。  相似文献   

5.
Climate change will increase the recurrence of extreme weather events such as drought and heavy rainfall. Evidence suggests that extreme weather events pose threats to ecosystem functioning, particularly to nutrient cycling and biomass production. These ecosystem functions depend strongly on below-ground biotic processes, including the activity and interactions among plants, soil fauna, and micro-organisms. Here, experimental grassland and heath communities of three phytodiversity levels were exposed either to a simulated single drought or to a heavy rainfall event. Both weather manipulations were repeated for two consecutive years. The magnitude of manipulations imitated the local 100-year extreme weather event. Heavy rainfall events increased below-ground plant biomass and stimulated soil enzyme activities as well as decomposition rates for both plant communities. In contrast, extreme drought did not reduce below-ground plant biomass and root length, soil enzyme activities, and cellulose decomposition rate. The low responsiveness of the measured ecosystem properties in face of the applied weather manipulations rendered the detection of significant interactions between weather events and phytodiversity impossible. Our data indicate on the one hand the close interaction between below ground plant parameters and microbial turnover processes in soil; on the other hand it shows that the plant–soil system can buffer against extreme drought events, at last for the period of investigation.  相似文献   

6.
单立山  李毅  张荣  张正中  种培芳 《生态学报》2017,37(21):7324-7332
为探讨荒漠植物白刺幼苗根系形态对降雨格局变化的响应特征,设置3个降雨量梯度(W-、W、W+)和2个降雨间隔时间梯度(T、T+)进行人工模拟试验,结果表明,1)降雨量和降雨间隔时间对白刺幼苗根系形态有不同程度的影响,且降雨量的作用效应更大。2)降雨量相同时,延长降雨间隔时间均使白刺幼苗主根长、根系平均直径、根体积和根表面积减小,但总根长和根系生物量和总生物量却增加,在高降雨量条件下(W+)延长降雨间隔时间白刺幼苗比根长和比表面积分别增加了45.09%和20.20%,但差异均不显著。3)降雨间隔时间相同时,降雨量减少30%仅使主根长平均增加12.06%,总根长、根平均直径、根体积和根表面积等根系形态指标均显著减少,比根长和比表面积变化不大;降雨量增加30%仅使比表面积显著增加,其余各形态指标差异均不显著,低降雨量条件下(W-)主根长与根冠比达到最大,其他指标均在高降雨量条件下(W+)达到最大。4)对8个根系形态参数进行主成分分析,根系生物量、总根长、总根表面积、比根长、比表面积和根体积6个根系生态参数受降雨格局影响显著。  相似文献   

7.
Cyanobacterial blooms are an increasing threat to water quality and global water security caused by the nutrient enrichment of freshwaters. There is also a broad consensus that blooms are increasing with global warming, but the impacts of other concomitant environmental changes, such as an increase in extreme rainfall events, may affect this response. One of the potential effects of high rainfall events on phytoplankton communities is greater loss of biomass through hydraulic flushing. Here we used a shallow lake mesocosm experiment to test the combined effects of: warming (ambient vs. +4°C increase), high rainfall (flushing) events (no events vs. seasonal events) and nutrient loading (eutrophic vs. hypertrophic) on total phytoplankton chlorophyll‐a and cyanobacterial abundance and composition. Our hypotheses were that: (a) total phytoplankton and cyanobacterial abundance would be higher in heated mesocosms; (b) the stimulatory effects of warming on cyanobacterial abundance would be enhanced in higher nutrient mesocosms, resulting in a synergistic interaction; (c) the recovery of biomass from flushing induced losses would be quicker in heated and nutrient‐enriched treatments, and during the growing season. The results supported the first and, in part, the third hypotheses: total phytoplankton and cyanobacterial abundance increased in heated mesocosms with an increase in common bloom‐forming taxa—Microcystis spp. and Dolichospermum spp. Recovery from flushing was slowest in the winter, but unaffected by warming or higher nutrient loading. Contrary to the second hypothesis, an antagonistic interaction between warming and nutrient enrichment was detected for both cyanobacteria and chlorophyll‐a demonstrating that ecological surprises can occur, dependent on the environmental context. While this study highlights the clear need to mitigate against global warming, oversimplification of global change effects on cyanobacteria should be avoided; stressor gradients and seasonal effects should be considered as important factors shaping the response.  相似文献   

8.
Invasion by exotic annual species is increasingly impacting Southern California arid lands, altering ecosystem processes and plant community composition. With climate change, the Southwestern United States is expected to experience increasingly variable rainfall. Larger rainfall events could facilitate invasion by exotic species that can capitalize on high resource conditions. Exotic annual species also have dense shallow root systems that could create positive feedbacks to further invasion by increasing soil organic matter and water holding capacity. Alternatively, fine root inputs could create negative feedbacks to exotic plant growth if they stimulate microbial nutrient immobilization. The dual influences of rainfall regime and fine root inputs on species performance were evaluated in an experiment where native and exotic species were grown individually and in combination under varying watering regimes (large infrequent or small frequent pulses, holding total rainfall constant) and root additions (with or without sterilized exotic roots). Mean soil moisture increased with larger infrequent watering events, and also with root addition. Plant growth (both native and exotic) increased with larger watering events, but declined with root addition. Exotic species growth declined more than native species growth with root additions. Mechanistically, root addition lowered inorganic nitrogen (N) availability, and microbial N immobilization increased with soil moisture content. Together these results show that increased fine root production promotes negative feedbacks to growth of exotic species via microbial N immobilization, especially under conditions of high soil moisture. Further, our results suggest that organic carbon additions are a potentially effective strategy for suppressing growth of problematic desert invaders.  相似文献   

9.
Quantifying patterns of fine root dynamics is crucial to the understanding of ecosystem structure and function, and in predicting how ecosystems respond to disturbance. Part of this understanding involves consideration of the carbon lost through root turnover. In the context of the rainfall pattern in the tropics, it was hypothesised that rainfall would strongly influence fine root biomass and longevity. A field study was conducted to determine root biomass, elemental composition and the influence of rainfall on longevity of fine roots in a tropical lowland evergreen rainforest at Danum Valley, Sabah, Malaysia. A combination of root coring, elemental analysis and rhizotron observation methods were used. Fine (less than 2 mm diameter) root biomass was relatively low (1700 kg ha −1) compared with previously described rainforest data. Standing root biomass was positively correlated with preceding rainfall, and the low fine root biomass in the dry season contained higher concentrations of N and lower concentrations of P and K than at other times. Observations on rhizotrons demonstrated that the decrease in fine root biomass in the dry season was a product of both a decrease in fine root length appearance and an increase in fine root length disappearance. Fitting an overall model to root survival time showed significant effects of rainfall preceding root disappearance, with the hazard of root disappearance decreasing by 8 for each 1 mm increase in the average daily (30 day) rainfall preceding root disappearance. While it is acknowledged that other factors have a part to play, this work demonstrates the importance of rainfall and soil moisture in influencing root biomass and root disappearance in this tropical rainforest.  相似文献   

10.
土壤氮素和土壤含水量是森林生态系统中限制植物生长的重要因子。为探讨常绿阔叶树种对模拟氮沉降增加和降水减少的响应,以同质园中自然生长的壳斗科(Fagaceae)丝栗栲(Castanopsis fargesii)、大叶青冈(Cyclobalanopsis jensenniana)和麻栎(Quercus acutissima)五年生幼树为对象,比较了对照(CK)、施氮(+N,施氮60 kg hm~(-2) a~(-1))、减水(-W,减少自然降水的50%)以及施氮和减水(+N-W,施氮60 kg hm~(-2) a~(-1)和减少自然降水的50%)对总生物量、各器官生物量及其生物量分配的影响。研究表明:(1)施氮显著增加了三种幼树的总生物量及各器官生物量(P0.05)。(2)减水未引起三种幼树的总生物量及各器官生物量的显著下降(P0.05)。(3)除麻栎树叶生物量、树枝生物量外,施氮和减水交互作用对三种幼树总生物量及各器官生物量没有明显影响(P0.05)。(4)施氮显著提高了丝栗栲幼树的干重比、大叶青冈幼树的干重比和枝重比(P0.05),降低了大叶青冈的叶重比和根重比(P0.05)。(5)减水导致丝栗栲幼树和麻栎幼树的根重比、麻栎幼树的根冠比显著增加(P0.05),引起丝栗栲幼树的枝重比、麻栎幼树的叶重比、枝重比和干重比显著降低(P0.05)。(6)施氮和减水交互作用显著提高了丝栗栲幼树的根重比(P0.05),降低了麻栎幼树的干重比(P0.05)。  相似文献   

11.
The contribution of savannas to global carbon storage is poorly understood, in part due to lack of knowledge of the amount of belowground biomass. In these ecosystems, the coexistence of woody and herbaceous life forms is often explained on the basis of belowground interactions among roots. However, the distribution of root biomass in savannas has seldom been investigated, and the dependence of root biomass on rainfall regime remains unclear, particularly for woody plants. Here we investigate patterns of belowground woody biomass along a rainfall gradient in the Kalahari of southern Africa, a region with consistent sandy soils. We test the hypotheses that (1) the root depth increases with mean annual precipitation (root optimality and plant hydrotropism hypothesis), and (2) the root-to-shoot ratio increases with decreasing mean annual rainfall (functional equilibrium hypothesis). Both hypotheses have been previously assessed for herbaceous vegetation using global root data sets. Our data do not support these hypotheses for the case of woody plants in savannas. We find that in the Kalahari, the root profiles of woody plants do not become deeper with increasing mean annual precipitation, whereas the root-to-shoot ratios decrease along a gradient of increasing aridity.  相似文献   

12.
Aim A consistent set of root characteristics for herbaceous plants growing in water‐limited environments has been developed based on compilations of global root databases, but an overall analysis of why these characteristics occur is still missing. The central question in this study is whether an ecohydrological model which assumes that rooting strategies reflect maximization of transpiration can predict the variations in rooting strategies of plants in dry environments. Location Arid ecosystems across the globe. Methods A model was used to explore interactions between plant biomass, root–shoot allocation, root distribution, rainfall, soil type and water use by plants. Results Model analyses showed that the predicted shifts in rooting depth and root–shoot allocation due to changes in rainfall, soil type and plant biomass were quite similar to observed shifts. The model predicted that soil type, annual rainfall and plant biomass each had strong effects on the rooting strategies that optimize transpiration, but also that these factors have strong interactive effects. The process by which plants compete for water availability (soil evaporation or drainage) especially affected the depth distribution of roots in the soil, whereas the availability of rainfall mainly affected the optimal root–shoot allocation strategy. Main conclusions The empirically observed key patterns in rooting characteristics of herbaceous plant species in arid environments could be explained in this theoretical study by using the concept of hydrological optimality, represented here by the maximization of transpiration.  相似文献   

13.
以上海市中心城区典型排水区域为研究对象,基于SWMM模型连续模拟2009—2011年降雨径流,分析区域235场降雨及地表径流特征.结果表明: 该区域发生频率较高的降雨具有雨量小、强度低的特点,雨量为0~10 mm、平均降雨强度为0~5 mm·h-1、降雨峰值为0~10 mm·h-1的降雨发生频率最大,分别占所有研究降雨场次的66.4%、88.8%和79.6%,这对于该区域应用低影响开发措施削减小雨量或低强度降雨下的径流和面源污染具有重要意义;径流量总体随着降雨量增大而增大,区域降雨产流临界值不仅与降雨量有关,还与平均降雨强度和降雨历时有关,2 mm以下的降雨基本不产流;2~4 mm的降雨如降雨强度在1.6 mm·h-1以下,产流量不到1 mm,当降雨量在4 mm以上、平均降雨强度大于1.6 mm·h-1时,区域基本产流.基于SWMM径流模拟结果,建立适合该区域的径流量与降雨因子的回归方程,其调整R2均大于0.97,能较好反映该区域径流量与降雨因子的关系.研究结果可为该区域更好地规划低影响开发措施和削减排水系统溢流污染提供计算基础,并为类似区域的径流研究提供参考.  相似文献   

14.
Human-induced climate change is expected to increase both the frequency and severity of extreme climate events, but their ecological impacts on root dynamics are poorly understood. We conducted a 1-year pulse warming and precipitation experiment in a tallgrass prairie in Oklahoma, USA to examine responses of root dynamics. We collected data in the pre-treatment year of 2002, imposed four treatments (control, 4°C warming, doubled precipitation, and warming plus doubled precipitation) in 2003, and observed post-treatment effects in 2004. Root biomass dynamics (for example, root growth and death) were measured using sequential coring and ingrowth coring methods. Treatment effects were not significant on standing root biomass in 2003, although root growth rate was significantly higher in the warmed than control plots. However, in the post-treatment year, the warmed plots had significantly lower standing root biomass than the controls, likely resulting from increased root death rate. Root death rate was significantly lower in the doubled precipitation and warmed plus doubled precipitation plots than that in the warmed plots in 2004. The root:shoot ratio showed similar responses to the post-treatments as standing root biomass, whereas aboveground biomass changed relatively little, indicating that roots were more sensitive to lagged effects than aboveground biomass. Our results demonstrate that root growth and death rates are highly sensitive to extreme climate events and lagged effects of extreme climate on root dynamics are important in assessing terrestrial carbon-cycle feedbacks to climate change.  相似文献   

15.
A field experiment was established to quantify the effects of different amounts of rainfall on root growth and dry mass of belowground plant parts in three types of grassland ecosystems. Mountain (Nardus grassland), highland (wet Cirsium grassland), and lowland grassland (dry Festuca grassland) ecosystems were studied in 2006 and 2007. Roofs constructed above the canopy of grass stands and gravity irrigation systems simulated three climate scenarios: (1) rainfall reduced by 50%, (2) rainfall enhanced by 50%, and (3) the full natural rainfall of the current growing season. Experimentally reduced amounts of precipitation significantly affected both yearly root increments and total root dry mass in the highland grassland. Dry conditions in 2007 resulted in considerable reduction of total belowground dry mass in highland and mountain grasslands. Although not all differences in root biomass of studied grasslands were statistically significantly, some also showed a decrease in root increment and in the amount of belowground dry mass in dry conditions.  相似文献   

16.
Climate change-induced rainfall reductions in Mediterranean forests negatively affect the decomposition of plant litter through decreased soil moisture. However, the indirect effects of reduced precipitation on litter decomposition through changes in litter quality and soil microbial communities are poorly studied. This is especially the case for fine root litter, which contributes importantly to forests plant biomass. Here we analyzed the effects of long-term (11 years) rainfall exclusion (29% reduction) on leaf and fine root litter quality, soil microbial biomass, and microbial community-level physiological profiles in a Mediterranean holm oak forest. Additionally, we reciprocally transplanted soils and litter among the control and reduced rainfall treatments in the laboratory, and analyzed litter decomposition and its responses to a simulated extreme drought event. The decreased soil microbial biomass and altered physiological profiles with reduced rainfall promoted lower fine root—but not leaf—litter decomposition. Both leaf and root litter, from the reduced rainfall treatment, decomposed faster than those from the control treatment. The impact of the extreme drought event on fine root litter decomposition was higher in soils from the control treatment compared to soils subjected to long-term rainfall exclusion. Our results suggest contrasting mechanisms driving drought indirect effects on above-(for example, changes in litter quality) and belowground (for example, shifts in soil microbial community) litter decomposition, even within a single tree species. Quantifying the contribution of these mechanisms relative to the direct soil moisture-effect is critical for an accurate integration of litter decomposition into ecosystem carbon dynamics in Mediterranean forests under climate change.  相似文献   

17.
The study attempts to evaluate the effect of fertilization and irrigation on steppe productivity in dry southern Mongolian desert-steppes. We conducted an irrigation- and NPK fertilization experiment, irrigating at levels of +100 mm and fertilizers at amounts equivalent to 20 gN (m² year)?1 in a factorial design. We tested the effects on soil nutrients and biomass production. Nutrients in plant tissue were analysed for Stipa krylovii and S. gobica, and for mixed sub-samples of total above- and belowground biomass. Available P and K and total K increased in the soil after fertilization while irrigation reduced total N. Biomass yield almost tripled and inflorescence numbers increased by factors of 4?C8 due to fertilization while irrigation alone had very restricted effects and only increased biomass of Agropyron cristatum. Nutrient content of biomass was elevated on fertilized plots. Results indicate that steppe productivity is severely restricted by nutrient availability even under ambient precipitation levels, raising the question whether nutrient withdrawal caused by current land use practices has detrimental effects on pasture productivity. The anticipated beneficial effect of increasing water availability however could not be confirmed. Whether there is an improvement in productivity due to increasing rainfall, as predicted by some climate change models, will depend on the distribution and intensity of rain events.  相似文献   

18.
施肥对日本落叶松人工林细根生物量的影响   总被引:6,自引:1,他引:6  
以辽宁东部山区16年生日本落叶松人工林为研究对象,探讨施肥对落叶松细根总生物量、不同层次生物量及不同根序生物量的影响.结果表明,与对照相比,施氮肥显著降低细根总生物量(P<0.01),而施磷肥及施氮+磷肥处理的细根总生物量差异不显著(P>0.05).落叶松人工林表层土壤(0~10 cm)细根生物量明显高于亚表层(10~20 cm)(P<0.01),各处理样地表层生物量占总生物量的64%~73%.施肥对不同层次、不同级别根序细根生物量的影响不同.与对照相比,施氮肥显著地降低了表层土壤1、3、4、5级根生物量(P<0.05),施磷肥(5级根除外)、施氮+磷肥(2级根除外)表层土壤各级根序细根生物量降低均不显著(P>0.05).在亚表层土壤,施氮肥和磷肥对各级根序生物量均没有显著影响(P>0.05);施氮+磷肥显著增加了1级根生物量(P<0.05),而其余各级根序细根生物量差异不显著(P>0.05).  相似文献   

19.
Little is known about direct and indirect effects of extreme weather events on arbuscular mycorrhizal fungi (AMF) under field conditions. In a field experiment, we investigated the response of mycorrhization to drought and heavy rain in grassland communities. We quantified AMF biomass in soil, mycorrhization of roots of the grass Holcus lanatus and the forb Plantago lanceolata, as well as plant performance. Plants were grown in four‐species communities with or without a legume. We hypothesised that drought increases and heavy rain decreases mycorrhization, and that higher mycorrhization will be linked to improved stress resistance and higher biomass production. Soil AMF biomass increased under both weather extremes. Heavy rain generally benefitted plants and increased arbuscules in P. lanceolata. Drought neither reduced plant performance nor root mycorrhization. Arbuscules increased in H. lanatus several weeks after drought, and in P. lanceolata several weeks after heavy rain spells. These long‐lasting effects of weather events on mycorrhization highlight the indirect influence of climate on AMF via their host plant. Legume presence increased plant community biomass, but had only minor effects on mycorrhization. Arbuscule colonisation was negatively correlated with senescence during the dry summer. Mycorrhization and biomass production in P. lanceolata were positively related. However, increased mycorrhization was related to less biomass in the grass. AMF mycelium in soil might generally increase under extreme events, root colonisation, however, is host species specific. This might amplify community shifts in grassland under climate change by further increasing stress resistance of species that already benefit from changed precipitation.  相似文献   

20.
喀斯特生态系统是全球陆地生态系统的重要组成部分,生态环境极为脆弱。由于碳酸盐岩长期强烈的化学溶蚀作用,其基本特征体现为地表土壤和地下岩溶裂隙及洞穴的二元结构。近年来,在全球气候变化下,我国西南地区降雨格局呈现降雨频次减少且单次降雨量增加的趋势。因此,岩溶裂隙和区域降雨时间格局改变将对喀斯特地区的植物生长产生重要影响。通过模拟不同岩溶裂隙生境(S0:24 cm土壤;S1/2:12 cm土壤层+12 cm裂隙层;S3/4:6 cm土壤层+18 cm裂隙层)和不同降雨时间格局(I2d:2 d降雨间隔;I19d:19 d降雨间隔),探究二年生桢楠(Phoebe zhennan S. Lee)幼苗是否通过生物量分配及根系分布的调整来适应变化环境。结果显示:(1)短时间降雨格局下,相比全土生境,少量岩溶裂隙存在并不影响桢楠幼苗生物量的积累,然而随着岩溶裂隙层进一步增厚和降雨时间间隔延长,桢楠降低了总生物量,减少了茎且增大了根和叶的生物量分配。(2)桢楠幼苗的根系垂直分布随着深度增加而下降,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号