首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Pacific biogeographical patterns in the widespread plant genus Melicope J.R. Forst. & G. Forst. (Rutaceae) were examined by generating phylogenetic hypotheses based on chloroplast and nuclear ribosomal sequence data. The aims of the study were to identify the number of colonization events of Melicope to the Hawaiian Islands and to reveal the relationship of Hawaiian Melicope to the Hawaiian endemic genus Platydesma H. Mann. The ultimate goal was to determine if the Hawaiian Islands served as a source area for the colonization of Polynesia. Location Nineteen accessions were sampled in this study, namely eight Melicope species from the Hawaiian Islands, four from the Marquesas Islands, one species each from Tahiti, Australia and Lord Howe Island, two Australian outgroups and two species of the Hawaiian endemic genus Platydesma. To place our results in a broader context, 19 sequences obtained from GenBank were included in an additional analysis, including samples from Australia, Papua New Guinea, New Zealand, Southeast Polynesia and Asia. Methods DNA sequences were generated across 19 accessions for one nuclear ribosomal and three chloroplast gene regions. Maximum parsimony analyses were conducted on separate and combined data sets, and a maximum likelihood analysis was conducted on the combined nuclear ribosomal and chloroplast data set. A broader nuclear ribosomal maximum parsimony analysis using sequences obtained from GenBank was also performed. Geographic areas were mapped onto the combined chloroplast and nuclear ribosomal tree, as well as onto the broader tree, using the parsimony criterion to determine the dispersal patterns. Results Phylogenetic analyses revealed that Platydesma is nested within Melicope and is sister to the Hawaiian members of Melicope. The Hawaiian Melicope + Platydesma lineage was a result of a single colonization event, probably from the Austral region. Finally, Marquesan Melicope descended from at least one, and possibly two, colonization events from the Hawaiian Islands. Main conclusions These data demonstrate a shifting paradigm of Pacific oceanic island biogeography, in which the patterns of long‐distance dispersal and colonization in the Pacific are more dynamic than previously thought, and suggest that the Hawaiian Islands may act as a stepping stone for dispersal throughout the Pacific.  相似文献   

2.
报道了青藏高原地区的点地梅属Androsace L.及羽叶点地梅属Pomatosace Maxim.共14种29个居群的ITS与trnL-F DNA序列各27与25条;并结合已报道相关种类的有关序列,构建了“点地梅群”的分子系统发育树。研究发现“点地梅群”的4个属为一单系类群,含有两个稳定的分支:一支全部由点地梅属的种类组成,另一支分别由羽叶点地梅属、Douglasia Lindley、Vitaliana Sesler和9种点地梅属植物组成;点地梅属裂叶组sect. Samuelia Schlechtd.的3个种与点地梅组sect. Androsace的2个种在3套序列分析中位于不同的系统位置。各分支基部的种都分布在中国东南部及青藏高原东部,分子地理标记的结果支持形态学提出该地区为“点地梅群”植物起源地的假设。从青藏高原东部地区向欧洲及其他北半球地区存在不同时期内多个进化支的多次扩散。粗略的时间估算表明该群植物可能是在第三纪的中新世以来才开始发生的。垫状种类分别在青藏高原和欧洲独立起源,而在青藏高原地区的分化要早于在欧洲的分化,在前一地区可能与青藏高原自中新世开始发生的造山运动、形成高海拔的山地有关,而在后一地区则是与第三纪末至第四纪的冰期气候反复波动有关。垫状植物在青藏高原上的大规模分布则可能较晚,与冰期结束后全新世晚期气候再次变冷有关。一些物种种内的遗传分化也可能部分反映了气候来回波动中它们在高原上的退缩和再扩张过程  相似文献   

3.
Phylogenetic relationships are inferred from nuclear ribosomal internal transcribed spacer sequences for species belonging to Sophora sect. Edwardsia from South America, New Zealand, Lord Howe Island, Hawai'i, La Réunion, Easter Island, and Raivavae Island (French Polynesia). Results support the monophyly of sect. Edwardsia , but relationships among the species from this section are poorly resolved due to most species having identical sequences. The origin of Sophora sect. Edwardsia is discussed, as competing hypotheses have proposed the group originated in South America from a North American ancestor, or in the north-west Pacific. We suggest sect. Edwardsia may have arisen in the north-west Pacific from a Eurasian ancestor.  © The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 435–441.  相似文献   

4.
The Oceanian plant genus Spiraeanthemum (Cunoniaceae) has a centre of diversity in New Caledonia, where it is represented by seven species. Its diversification was investigated using two low‐copy nuclear genes, ncpGS and GapC, and phylogenetic analyses were based on maximum parsimony, maximum likelihood and recombination networks. We detected several cases of gene recombination in both datasets, and these have obscured the history within the genus. For S. ellipticum and S. pubescens, accessions from southern populations on ultramafic soils were genetically distinct from accessions from northern populations on non‐ultramafic soils. Given that no obvious morphological characters distinguish northern and southern populations in either taxon, both may be considered as examples of cryptic species. Incongruence between gene trees and species' delimitation may be explained by the parallel evolution of similar morphology, differential lineage sorting leading to differential fixation of alleles or different introgression patterns in the north and south leading to allele displacement. In New Caledonia, some species with broad ecological preferences may thus be artificial concepts. This suggests that they should be treated more critically in monographs and that the species' richness of the New Caledonian flora may be underestimated. Problems associated with the typification of S. ellipticum and evidence of hybridization events in the history of Spiraeanthemum are also discussed. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 137–152.  相似文献   

5.
The monophyly and phylogeny of the adaptive radiation of Hawaiian finches (Fringillidae: Drepanidini; honeycreepers, auct.) were studied using parsimony analysis of comparative osteology, combined with Templeton (Wilcoxon signed‐ranks) tests of alternative phylogenetic hypotheses. Eighty‐four osteological characters were scored in 59 terminal taxa of drepanidines, including 24 fossil forms, and in 30 outgroup species. The optimal phylogenetic trees show considerable agreement, and some conflict, with independently derived ideas about drepanidine evolution. The monophyly of a large Hawaiian radiation was upheld, although one fossil taxon from Maui fell outside the drepanidine clade. The finch‐billed species were placed as basal drepanidine taxa, and continental cardueline finches (Carduelini) were identified as the radiation's closest outgroups. The study found anatomical as well as phylogenetic evidence that the radiation had a finch‐billed ancestor. The optimal trees identify the red‐and‐black plumage group as a clade, and suggest that the tubular tongue evolved only once in the radiation. Because comparative osteology provides too few characters to strongly support all the nodes of the tree, it was helpful to evaluate statistical support for alternative hypotheses about drepanidine relationships using the Templeton test. Among the alternatives that received significant statistical support are a relationship of the drepanidines with cardueline finches rather than with the Neotropical honeycreepers (Thraupini), classification of the controversial genera Paroreomyza and Melamprosops as drepanidines, and a secondary loss of the tubular tongue in Loxops mana. The hypothesis of monophyly for all the Hawaiian taxa in the study was not rejected statistically. The study provides a framework for incorporating morphological and palaeontological information in evolutionary studies of the Drepanidini. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 141 , 207–255.  相似文献   

6.
Gross anatomical characters of all 18 species of Littorina are used to construct a phylogenetic hypothesis for the genus, by the method of cladistic analysis. The resulting cladogram suggests that of the four subgenera of Littorina, one (Littorina) is paraphyletic. It is uncertain whether the genus Mainwaringia should be included in Littorina. It is shown that the non-planktotrophic Littorina species in the northern Atlantic comprise a monophyletic group, with the sister-species L. kurila and/or L. subrotundata in the northern Pacific. Invasion of the Atlantic by a minimum of two Pacific species, across the Arctic migration route established during the late Cenozoic, is sufficient to account for the modern distribution of the subgenera Littorina and Neritrema. The importance of the cladogram as a basis for hypotheses of adaptation is illustrated by a discussion of spawn and development in Littorina.  相似文献   

7.
Part of the mitochondrial Cytochrome Oxidase I gene was sequenced for seven species of Gonepteryx (Pieridac) butterflies. Four of the species are island endemics inhabiting the Canary Island archipelago and Madeira. The remaining three are European and African conspecifics. Sequence data were analysed phylogenetically by maximum parsimony and maximum likelihood methods. The resulting trees were used to deduce Canarian species' ancestry, sequential inter-island colonization and systematics. They suggest African ancestry for the Canary Island taxa and a colonization pattern, within the archipelago, compatible with the geological ages of the islands and other Canarian fauna: a colonization sequence from Africa to Tenerife and Gomera, followed by Tenerife to La Palma. The molecular phylogeny indicated that there are three Canarian endemics, G. cleobule, G. palmae and G. eversi from Tenerife, La Palma and Gomera, respectively.  相似文献   

8.
A taxonomic revision of the genus Aneorhachis Kleine 1923 (Coleoptera: Brentidae) and a phylogenetic analysis of species belonging to this genus are carried out. The genus Ipsopisthius Kabakov 2001 is synonymised with Aneorhachis, and two new combinations are proposed: Aneorhachis hirta (Kabakov 2001), n. comb. and A. incerta (Kleine 1935), n. comb. Higonius nitens Goossens 2008 is synonymized with A. incerta. One new species is described from New Guinea, A. papuana n. sp. All the species are redescribed and type-specimens are illustrated; an identification key is proposed. A maximum parsimony analysis is provided on the base of 23 characters from adult morphology. This analysis confirms the monophyly of the genus and seems to show that Aneorhachis originated on continental Asia and then spread out eastward to colonize Pacific islands.  相似文献   

9.
10.
Aim To analyse the worldwide distribution patterns of hagfishes using panbiogeographical track analysis, and to attempt to correlate these patterns with the tectonic history of the ocean basins. Location Atlantic and Pacific oceans. Method The distributions of 47 out of 70 species of hagfish (in the genera Eptatretus, Myxine, Nemamyxine, Neomyxine, and Paramyxine) were studied by the panbiogeographical method of track analysis. The analysis was performed using distributional data obtained from the collections included in the Ocean Biogeographic Information System (OBIS, http://www.iobis.org ) and FishBase ( http://www.fishbase.org ), with additional records from the literature. Individual tracks were obtained for each species by plotting localities and connecting them by minimum‐spanning trees. Generalized tracks were determined from the spatial overlap between individual tracks. Results Six generalized tracks were found: in the Gulf of Mexico, Caribbean Sea, South‐eastern Atlantic, Western Pacific, North‐eastern Pacific and South‐eastern Pacific. Main conclusions The distribution patterns of myxinids are marked by a high degree of endemism and vicariance, and are correlated with the tectonic features involved in many of the events that led to the development of oceanic basins. The main massing of the group is around the Pacific Basin. In the Atlantic Ocean, the distribution of Myxine glutinosa seems to correspond to a classic trans‐oceanic track and vicariance resulting from the opening of the Atlantic Ocean during the Cretaceous. In the Pacific Ocean, the distribution of the Eptatretus and Paramyxine species is clearly associated with the margins of the Pacific tectonic plate. The generalized tracks of hagfishes are shared by several other groups of marine organisms, including many from shallow tropical waters, implying a common history for this marine biota. Overall, vicariance is a major feature of hagfish distribution, suggesting vicariant differentiation of widespread ancestors as a result of sea‐floor spreading between continents in connection with ocean formation.  相似文献   

11.
Hawaiian stilts (Himantopus mexicanus knudseni) are an endangered subspecies of the Black-necked stilt endemic to the Hawaiian Islands. Despite long-term study, the main drivers of Hawaiian stilt population dynamics are poorly understood. We tested for density dependence using two sources of evidence: a 30-year time series of annual estimated range-wide abundance, and two 15+ year time series of reproductive success. Using separate methods with independent data, sources allowed us to make up for the potentially positive bias of one approach with the more conservative nature of the second. We compared nonlinear density-dependent and density-independent population model fits to our time-series data, using both frequentist and Bayesian state-space approaches. Across both approaches, density-dependent models best fit observed population dynamics, with lower AICc and cross-validation statistics compared to density-independent models. Among density-dependent models, a conditional model in which density-independent dynamics occur below a population size threshold (~850–1,000 birds), and then density-dependent dynamics occur above that threshold, performed best across Bayesian and frequentist model comparisons, with the Ricker model ranked next or equivalently. Our analysis of reproduction data revealed a strong negative effect of local adult density on nest success (proportion of nests hatching at least one chick) at Kealia National Wildlife Refuge on Maui, where few alternative breeding habitats are available, but no such effect at another site where many nearby alternative wetlands are available. These congruent results across independent datasets and analytical approaches support the hypothesis that Hawaiian stilts exhibit density dependence across their range.  相似文献   

12.
13.
We analysed the phylogenetic relationships of ten of the 13 known species of the genus Apomys using DNA sequences from cytochrome b . Apomys, endemic to oceanic portions of the Philippine archipelago, diversified during the Pliocene as these oceanic islands arose de novo . Several of the speciation events probably took place on Luzon or Mindanao, the two largest, oldest, and most topographically complex islands. Only one speciation event is associated with vicariance due to Pleistocene sea-level fluctuation, and a Pleistocene diversification model in which isolation is driven by sea-level changes is inconsistent with the data. Tectonic vicariance is nearly absent from the Philippines, in which tectonic coalescence plays a significant role. Most speciation events (about two-thirds) are associated with dispersal to newly developed oceanic islands. The data imply that the species have persisted for long periods, measured in millions of years after their origins; further implications therefore are that faunal turnover is very slow, and persistence over geological time spans is more prominent than repeated colonization and extinction. Neither the equilibrium nor the vicariance model of biogeography adequately encompasses these results; a model incorporating colonization, extinction, and speciation is necessary and must incorporate long-term persistence to accommodate our observations.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 699–715.  相似文献   

14.
Henderson Island, a raised coral island on the extreme south-easterly edge of the Indo-Pacific plate, is of great importance as one of the few examples of a Pacific island with intact lowland forest. It is also of biogeographic interest as it is practically the final island in a series of island chains, along which the fauna of Polynesia has colonized, reaching back to New Guinea. New collections of the non-flying terrestrial arthropod fauna were made on Henderson Island in 1991. In excess of 100 taxa are now known. There is a rich mite fauna (especially oribatids), with many apparently endemic, some 26 species of spider, and nine species of isopod (including three endemic to Henderson or nearby Ducie Atoll). In addition Diplopoda, Chilopoda, Amphipoda, Pseudoscorpiones, Diplura, Protura and Collembola are represented. The majority of the fauna is derived from the west, as expected, though many taxa appear to be introduced, some of them from the neotropics (e.g. Frigga crocuta and perhaps Hoplophorella stilifer).  相似文献   

15.
16.
Aim To investigate phylogeographic relationships, genetic connectivity and potential colonization routes for Hawaii’s endemic butterflyfishes (family Chaetodontidae). Location The Hawaiian Archipelago (central Pacific Ocean). Methods Molecular genetic analysis of mitochondrial DNA from three species of endemic Hawaiian butterflyfishes (Chaetodon multicinctus, n = 280; Chaetodon miliaris, n = 408; Chaetodon fremblii, n = 358) sampled from across the Hawaiian Archipelago was used in a suite of population genetic analyses to examine population histories and calculate coalescence times. We review a recent phylogenetic hypothesis for the Chaetodontidae and optimize ancestral distributions to nodes as a means of inferring colonization pathways to Hawaii. Results We found no evidence for population subdivisions across their ranges for any of the three endemic Hawaiian butterflyfish species (ΦST ≈ 0; P > 0.05 in each case). Coalescence analyses revealed that C. multicinctus, C. miliaris and C. fremblii date to genetic bottlenecks of c. 12 ka (95% confidence interval of τ, 0–46,732 years ago), c. 74 ka (95% confidence interval of τ, 62,918–105,699 years ago) and c. 301 ka (95% confidence interval of τ, 88,981–478,495 years ago), respectively. We found that the West Pacific appears to be the ancestral source for two of three independent colonization events to Hawaii (leading to the speciation of C. miliaris and C. fremblii). The third colonization of Hawaii (leading to the divergence of C. multicinctus) is ambiguous, but may have involved island‐hopping from the South Pacific via the Line Islands. Main conclusions Our results are consistent with the growing body of data indicating that ecological specialists may be more susceptible to severe population bottlenecks during large‐scale climatic variation on evolutionary time‐scales. The isolation of the Hawaiian Archipelago presents challenges for colonization by even the most highly dispersive marine organisms, and routes of colonization by endemic butterflyfishes show a variable pattern, indicating that there may be several pathways, both spatially and temporally, for marine fauna to colonize Hawaii. Hawaiian endemic butterflyfishes appear to represent genetically homogeneous populations across the archipelago.  相似文献   

17.
Morphological, behavioural and biochemical characters of 9 cosmopolitan, benthic species of the nemertean genus Lineus are used both to clarify their taxonomy and to discuss their phylogenetic relationships. Data analysis shows that all fissiparous species of Lineus collected in the world seas up to date can be placed in a single species, L. sanguineus, with three recognisable subspecies, L. s. sanguineus, L. s. nigricans and L. s. pseudolacteus. These taxa were originally described as separate species mainly according to their geographic origin under the names L. sanguineus (shores of European seas), L. socialis (Atlantic North American shores), L. vegetus (Pacific North American shores), L. pseudolacteus (shores of the English Channel) and L. nigricans (Mediterranean coasts of Italy and France). Examination of the character value matrix suggests a phylogenetic tree developing from two ancestral branches. The first branch includes the two related species L. ruber and L. viridis, the second branch the three species L. longissimus, L. lacteus and L. sanguineus. This approach to the taxonomic and phylogenetic relationships of Lineus nemertean species is in agreement with the intra- and interspecies histocompatibility data in nemerteans: (i) grafts transplanted from donors to recipients of the same species succeed and grafts transplanted from donors to recipients of different species fail; (ii) grafts are rejected more rapidly when the donor and recipient species diverged earlier in evolution and, a contrario, grafts are accepted better when the donor and recipient species have been more recently isolated.  相似文献   

18.
19.
20.
Aim A detailed database of distributions and phylogenetic relationships of native Hawaiian flowering plant species is used to weigh the relative influences of environmental and historical factors on species numbers and endemism. Location The Hawaiian Islands are isolated in the North Pacific Ocean nearly 4000 km from the nearest continent and nearly as distant from the closest high islands, the Marquesas. The range of island sizes, environments, and geological histories within an extremely isolated archipelago make the Hawaiian Islands an ideal system in which to study spatial variation in species distributions and diversity. Because the biota is derived from colonization followed by extensive speciation, the role of evolution in shaping the regional species assemblage can be readily examined. Methods For whole islands and regions of each major habitat, species–area relationships were assessed. Residuals of species–area relationships were subjected to correlation analysis with measures of endemism, isolation, elevation and island age. Putative groups of descendents of each colonist from outside the Hawaiian Islands were considered phylogenetic lineages whose distributions were included in analyses. Results The species–area relationship is a prominent pattern among islands and among regions of each given habitat. Species number in each case correlates positively with number of endemics, number of lineages and number of species per lineage. For mesic and wet habitat regions, island age is more influential than area on species numbers, with older islands having more species, more single‐island endemics, and higher species : lineage ratios than their areas alone would predict. Main conclusions Because species numbers and endemism are closely tied to speciation in the Hawaiian flora, particularly in the most species‐rich phylogenetic lineages, individual islands’ histories are central in shaping their biota. The Maui Nui complex of islands (Maui, Moloka‘i, Lāna‘i and Kaho‘olawe), which formed a single large landmass during most of its history, is best viewed in terms of either the age or area of the complex as a whole, rather than the individual islands existing today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号