首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolon formation and metabolic channeling in plant secondary metabolism enable plants to effectively synthesize specific natural products and to avoid metabolic interference. Channeling can involve different cell types, take advantage of compartmentalization within the same cell or proceed directly within a metabolon. New experimental approaches document the importance of channeling in the synthesis of isoprenoids, alkaloids, phenylpropanoids, flavonoids and cyanogenic glucosides. Metabolon formation and metabolic channeling in natural-product synthesis facilitate attempts to genetically engineer new pathways into plants to improve their content of valuable natural products. They also offer the opportunity to introduce new traits by genetic engineering to produce plant cultivars that adhere to the principle of substantial equivalence.  相似文献   

2.
We report a synthetic biology approach to demonstrate substrate channeling in an unusual bifunctional flavoprotein dimethylglycine oxidase. The catabolism of dimethylglycine through methyl group oxidation can potentially liberate toxic formaldehyde, a problem common to many amine oxidases and dehydrogenases. Using a novel synthetic in vivo reporter system for cellular formaldehyde, we found that the oxidation of dimethylglycine is coupled to the synthesis of 5,10-methylenetetrahydrofolate through an unusual substrate channeling mechanism. We also showed that uncoupling of the active sites could be achieved by mutagenesis or deletion of the 5,10-methylenetetrahydrofolate synthase site and that this leads to accumulation of intracellular formaldehyde. Channeling occurs by nonbiased diffusion of the labile intermediate through a large solvent cavity connecting both active sites. This central “reaction chamber” is created by a modular protein architecture that appears primitive when compared with the sophisticated design of other paradigm substrate-channeling enzymes. The evolutionary origins of the latter were likely similar to dimethylglycine oxidase. This work demonstrates the utility of synthetic biology approaches to the study of enzyme mechanisms in vivo and points to novel channeling mechanisms that protect the cell milieu from potentially toxic reaction products.  相似文献   

3.
The kinetics of the coupled reactions between carbamoyl-phosphate synthetase (CPSase) and both aspartate transcarbamoylase (ATCase) and ornithine transcarbamoylase (OTCase) from the deep sea hyperthermophilic archaeon Pyrococcus abyssi demonstrate the existence of carbamoyl phosphate channeling in both the pyrimidine and arginine biosynthetic pathways. Isotopic dilution experiments and coupled reaction kinetics analyzed within the context of the formalism proposed by Ovádi et al. (Ovádi, J., Tompa, P., Vertessy, B., Orosz, F., Keleti, T., and Welch, G. R. (1989) Biochem. J. 257, 187-190) are consistent with a partial channeling of the intermediate at 37 degrees C, but channeling efficiency increases dramatically at elevated temperatures. There is no preferential partitioning of carbamoyl phosphate between the arginine and pyrimidine biosynthetic pathways. Gel filtration chromatography at high and low temperature and in the presence and absence of substrates did not reveal stable complexes between P. abyssi CPSase and either ATCase or OTCase. Thus, channeling must occur during the dynamic association of coupled enzymes pairs. The interaction of CPSase-ATCase was further demonstrated by the unexpectedly weak inhibition of the coupled reaction by the bisubstrate analog, N-(phosphonacetyl)-L-aspartate (PALA). The anomalous effect of PALA suggests that, in the coupled reaction, the effective concentration of carbamoyl phosphate in the vicinity of the ATCase active site is 96-fold higher than the concentration in the bulk phase. Channeling probably plays an essential role in protecting this very unstable intermediate of metabolic pathways performing at extreme temperatures.  相似文献   

4.
Substrate channeling is a process of transferring the product of one enzyme to an adjacent cascade enzyme or cell without complete mixing with the bulk phase. Such phenomena can occur in vivo, in vitro, or ex vivo. Enzyme–enzyme or enzyme–cell complexes may be static or transient. In addition to enhanced reaction rates through substrate channeling in complexes, numerous potential benefits of such complexes are protection of unstable substrates, circumvention of unfavorable equilibrium and kinetics imposed, forestallment of substrate competition among different pathways, regulation of metabolic fluxes, mitigation of toxic metabolite inhibition, and so on. Here we review numerous examples of natural and synthetic complexes featuring substrate channeling. Constructing synthetic in vivo, in vitro or ex vivo complexes for substrate channeling would have great biotechnological potentials in metabolic engineering, multi-enzyme-mediated biocatalysis, and cell-free synthetic pathway biotransformation (SyPaB).  相似文献   

5.
《New biotechnology》2015,32(6):658-664
Systems Biocatalysis is an emerging concept of organizing enzymes in vitro to construct complex reaction cascades for an efficient, sustainable synthesis of valuable chemical products. The strategy merges the synthetic focus of chemistry with the modular design of biological systems, which is similar to metabolic engineering of cellular production systems but can be realized at a far lower level of complexity from a true reductionist approach. Such operations are free from material erosion by competing metabolic pathways, from kinetic restrictions by physical barriers and regulating circuits, and from toxicity problems with reactive foreign substrates, which are notorious problems in whole-cell systems. A particular advantage of cell-free concepts arises from the inherent opportunity to construct novel biocatalytic reaction systems for the efficient synthesis of non-natural products (“artificial metabolisms”) by using enzymes specifically chosen or engineered for non-natural substrate promiscuity. Examples illustrating the technology from our laboratory are discussed.  相似文献   

6.
We analyzed the carbon fluxes in the central metabolism of Geobacter metallireducens strain GS-15 using 13C isotopomer modeling. Acetate labeled in the first or second position was the sole carbon source, and Fe-nitrilotriacetic acid was the sole terminal electron acceptor. The measured labeled acetate uptake rate was 21 mmol/g (dry weight)/h in the exponential growth phase. The resulting isotope labeling pattern of amino acids allowed an accurate determination of the in vivo global metabolic reaction rates (fluxes) through the central metabolic pathways using a computational isotopomer model. The tracer experiments showed that G. metallireducens contained complete biosynthesis pathways for essential metabolism, and this strain might also have an unusual isoleucine biosynthesis route (using acetyl coenzyme A and pyruvate as the precursors). The model indicated that over 90% of the acetate was completely oxidized to CO2 via a complete tricarboxylic acid cycle while reducing iron. Pyruvate carboxylase and phosphoenolpyruvate (PEP) carboxykinase were present under these conditions, but enzymes in the glyoxylate shunt and malic enzyme were absent. Gluconeogenesis and the pentose phosphate pathway were mainly employed for biosynthesis and accounted for less than 3% of total carbon consumption. The model also indicated surprisingly high reversibility in the reaction between oxoglutarate and succinate. This step operates close to the thermodynamic equilibrium, possibly because succinate is synthesized via a transferase reaction, and the conversion of oxoglutarate to succinate is a rate-limiting step for carbon metabolism. These findings enable a better understanding of the relationship between genome annotation and extant metabolic pathways in G. metallireducens.  相似文献   

7.
A growing body of evidence indicates that many cellular reactions within metabolic pathways are catalyzed not by free-floating 'soluble' enzymes, but via one or more membrane-associated multienzyme complexes. This type of macromolecular organization has important implications for the overall efficiency, specificity, and regulation of metabolic pathways. An ever-increasing number of biochemical and genetic studies on primary and secondary metabolism have laid a solid foundation for this model, providing compelling evidence in favor of the so-called channeling of intermediates between enzyme active sites and colocalization of enzymes inside a cell. In this review, we discuss several of nature's most notable multifunctional enzyme systems including the AROM complex and tryptophan synthase, each of which provides new fundamental insights into the structural organization of metabolic machinery within living cells. We then focus on the growing body of literature related to engineering strategies using protein chimeras and post-translational assembly mechanisms. Common among these techniques is the desire to mimic natural enzyme organization for optimizing the production of valuable metabolites with industrial and medical importance.  相似文献   

8.
Cholesterol is essential to human health, and its levels are tightly regulated by a balance of synthesis, uptake, and efflux. Cholesterol synthesis requires the actions of more than twenty enzymes to reach the final product, through two alternate pathways. Here we describe a physical and functional interaction between the two terminal enzymes. 24-Dehydrocholesterol reductase (DHCR24) and 7-dehydrocholesterol reductase (DHCR7) coimmunoprecipitate, and when the DHCR24 gene is knocked down by siRNA, DHCR7 activity is also ablated. Conversely, overexpression of DHCR24 enhances DHCR7 activity, but only when a functional form of DHCR24 is used. DHCR7 is important for both cholesterol and vitamin D synthesis, and we have identified a novel layer of regulation, whereby its activity is controlled by DHCR24. This suggests the existence of a cholesterol “metabolon”, where enzymes from the same metabolic pathway interact with each other to provide a substrate channeling benefit. We predict that other enzymes in cholesterol synthesis may similarly interact, and this should be explored in future studies.  相似文献   

9.
Isoflavonoids are a large group of plant natural products and play important roles in plant defense. They also possess valuable health-promoting activities with significant health benefits for animals and humans. The isoflavonoids are identified primarily in leguminous plants and are synthesized through the central phenylpropanoid pathway and the specific isoflavonoid branch pathways in legumes. Structural studies of some key enzymes in the central phenylpropanoid pathway shed light on the early stages of the (iso)flavonoid biosynthetic process. Significant impact has also been made on structural studies of enzymes in the isoflavonoid branch pathways. Structures of isoflavonoid-specific NADPH-dependent reductases revealed how the (iso)flavonoid backbones are modified by reduction reactions and how enzymes specifically recognize isoflavonoids and catalyze stereo-specific reductions. Structural studies of isoflavonoid methyltransferases and glycosyltransferases revealed how isoflavonoids are further decorated with methyl group and sugars in different methylation and glycosylation patterns that determine their bioactivities and functions. In combination with mutagenesis and biochemical studies, the detailed structural information of these enzymes provides a basis for understanding the complex biosynthetic process, enzyme catalytic mechanisms, and substrate specificities. Structure-based homology modeling facilitates the functional characterization of these large groups of biosynthetic enzymes and their homologs. Structure-based enzyme engineering is becoming a new strategy for synthesis of bioactive isoflavonoids and also facilitates plant metabolic engineering towards improvement of quality and production of crop plants.  相似文献   

10.
We perform Brownian dynamics simulations and Smoluchowski continuum modeling of the bifunctional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (P. falciparum DHFR-TS) with the objective of understanding the electrostatic channeling of dihydrofolate generated at the TS active site to the DHFR active site. The results of Brownian dynamics simulations and Smoluchowski continuum modeling suggest that compared to Leishmania major DHFR-TS, P. falciparum DHFR-TS has a lower but significant electrostatic-mediated channeling efficiency (∼15–25%) at physiological pH (7.0) and ionic strength (150 mM). We also find that removing the electric charges from key basic residues located between the DHFR and TS active sites significantly reduces the channeling efficiency of P. falciparum DHFR-TS. Although several protozoan DHFR-TS enzymes are known to have similar tertiary and quaternary structure, subtle differences in structure, active-site geometry, and charge distribution appear to influence both electrostatic-mediated and proximity-based substrate channeling.  相似文献   

11.
Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds.  相似文献   

12.
Metabolism at the cytosol–mitochondria interface and its regulation is of major importance particularly for efficient production of biopharmaceuticals in Chinese hamster ovary (CHO) cells but also in many diseases. We used a novel systems-oriented approach combining dynamic metabolic flux analysis and determination of compartmental enzyme activities to obtain systems level information with functional, spatial and temporal resolution. Integrating these multiple levels of information, we were able to investigate the interaction of glycolysis and TCA cycle and its metabolic control. We characterized metabolic phases in CHO batch cultivation and assessed metabolic efficiency extending the concept of metabolic ratios. Comparing in situ enzyme activities including their compartmental localization with in vivo metabolic fluxes, we were able to identify limiting steps in glycolysis and TCA cycle. Our data point to a significant contribution of substrate channeling to glycolytic regulation. We show how glycolytic channeling heavily affects the availability of pyruvate for the mitochondria. Finally, we show that the activities of transaminases and anaplerotic enzymes are tailored to permit a balanced supply of pyruvate and oxaloacetate to the TCA cycle in the respective metabolic states. We demonstrate that knowledge about metabolic control can be gained by correlating in vivo metabolic flux dynamics with time and space resolved in situ enzyme activities.  相似文献   

13.
Shearer G  Lee JC  Koo JA  Kohl DH 《The FEBS journal》2005,272(13):3260-3269
A pathway intermediate is said to be 'channeled' when an intermediate just made in a pathway has a higher probability of being a substrate for the next pathway enzyme compared with a molecule of the same species from the aqueous cytoplasm. Channeling is an important phenomenon because it might play a significant role in the regulation of metabolism. Whereas the usual mechanism proposed for channeling is the (often) transient interaction of sequential pathway enzymes, many of the supporting data come from results with pure enzymes and dilute cell extracts. Even when isotope dilution techniques have utilized whole-cell systems, most often only a qualitative assessment of channeling has been reported. Here we develop a method for making a quantitative calculation of the fraction channeled in glycolysis from in vivo isotope dilution experiments. We show that fructose-1,6-bisphosphate, in whole cells of Escherichia coli, was strongly channeled all the way to CO2, whereas fructose-6-phosphate was not. Because the signature of channeling is lost if any downstream intermediate prior to CO2 equilibrates with molecules in the aqueous cytosol, it was not possible to evaluate whether glucose-6-phosphate was channeled in its transformation to fructose-6-phosphate. The data also suggest that, in addition to pathway enzymes being associated with one another, some are free in the aqueous cytosol. How sensitive the degree of channeling is to growth or experimental conditions remains to be determined.  相似文献   

14.
Protein-protein interactions are operative at almost every level of cell structure and function as, for example, formation of sub-cellular organelles, packaging of chromatin, muscle contraction, signal transduction, and regulation of gene expression. Public databases of reported protein-protein interactions comprise hundreds of thousands interactions, and this number is steadily growing. Elucidating the implications of protein-protein interactions for the regulation of the underlying cellular or extra-cellular reaction network remains a great challenge for computational biochemistry. In this work, we have undertaken a systematic and comprehensive computational analysis of reported enzyme-enzyme interactions in the metabolic networks of the model organisms Escherichia coli and Saccharomyces cerevisiae. We grouped all enzyme pairs according to the topological distance that the catalyzed reactions have in the metabolic network and performed a statistical analysis of reported enzyme-enzyme interactions within these groups. We found a higher frequency of reported enzyme-enzyme interactions within the group of enzymes catalyzing reactions that are adjacent in the network, i.e. sharing at least one metabolite. As some of these interacting enzymes have already been implicated in metabolic channeling our analysis may provide a useful screening for candidates of this phenomenon. To check for a possible regulatory role of interactions between enzymes catalyzing non-neighboring reactions, we determined potentially regulatory enzymes using connectivity in the network and absolute change of Gibbs free energy. Indeed a higher portion of reported interactions pertain to such potentially regulatory enzymes.  相似文献   

15.
16.
Channeling of urea cycle intermediates in situ in permeabilized hepatocytes   总被引:2,自引:0,他引:2  
Preferential use of endogenously generated intermediates by the enzymes of the urea cycle was observed using isolated rat hepatocytes made permeable to low molecular weight compounds with alpha-toxin. The permeabilized cells synthesized [14C]urea from added NH4Cl, [14C]HCO3-, ornithine, and aspartate, using succinate as a respiratory substrate; with all substrates saturating, about 4 nmol of urea were formed per min/mg dry weight of cells. Urea usually accounted for about 40-50% of the total (NH3 + ornithine)-dependent counts, arginine for less than 10%, and citrulline for about 30%. Very tight channeling of arginine between argininosuccinate lyase and arginase was shown by the fact that the addition of a 200-fold excess of unlabeled arginine to the incubations did not decrease the percentage of counts found in urea or increase that found in arginine, even though a substantial amount of the added arginine was hydrolyzed inside the cells. The channeling of argininosuccinate between its synthetase and lyase was demonstrated by similar observations; unlabeled argininosuccinate added in 200-fold excess decreased the percentage of counts in urea by only 25%. Channeling of citrulline from its site of synthesis by ornithine transcarbamylase in the mitochondrial matrix to argininosuccinate synthetase in the cytoplasmic space was also shown. These results strongly suggest that the three "soluble" cytoplasmic enzymes of the urea cycle are grouped around the mitochondria and are spatially organized within the cell in such a way that intermediates can be efficiently transferred between them.  相似文献   

17.
Fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are key pathways involved in cellular energetics. Reducing equivalents from FAO enter OXPHOS at the level of complexes I and III. Genetic disorders of FAO and OXPHOS are among the most frequent inborn errors of metabolism. Patients with deficiencies of either FAO or OXPHOS often show clinical and/or biochemical findings indicative of a disorder of the other pathway. In this study, the physical and functional interactions between these pathways were examined. Extracts of isolated rat liver mitochondria were subjected to blue native polyacrylamide gel electrophoresis (BNGE) to separate OXPHOS complexes and supercomplexes followed by Western blotting using antisera to various FAO enzymes. Extracts were also subjected to sucrose density centrifugation and fractions analyzed by BNGE or enzymatic assays. Several FAO enzymes co-migrated with OXPHOS supercomplexes in different patterns in the gels. When palmitoyl-CoA was added to the sucrose gradient fractions containing OXPHOS supercomplexes in the presence of potassium cyanide, cytochrome c was reduced. Cytochrome c reduction was completely blocked by myxothiazol (a complex III inhibitor) and 3-mercaptopropionate (an inhibitor of the first step of FAO), but was only partially inhibited by rotenone (a complex I inhibitor). Although palmitoyl-CoA and octanoyl-CoA provided reducing equivalents to OXPHOS-containing supercomplex fractions, no accumulation of their intermediates was detected. In contrast, short branched acyl-CoA substrates were not metabolized by OXPHOS-containing supercomplex fractions. These data provide evidence of a multifunctional FAO complex within mitochondria that is physically associated with OXPHOS supercomplexes and promotes metabolic channeling.  相似文献   

18.
Glycolysis and gluconeogenesis are central pathways of metabolism across all domains of life. A prominent enzyme in these pathways is phosphoglucose isomerase (PGI), which mediates the interconversion of glucose-6-phosphate and fructose-6-phosphate. The predatory bacterium Bdellovibrio bacteriovorus leads a complex life cycle, switching between intraperiplasmic replicative and extracellular ‘hunter’ attack-phase stages. Passage through this complex life cycle involves different metabolic states. Here we present the unliganded and substrate-bound structures of the B. bacteriovorus PGI, solved to 1.74 Å and 1.67 Å, respectively. These structures reveal that an induced-fit conformational change within the active site is not a prerequisite for the binding of substrates in some PGIs. Crucially, we suggest a phenylalanine residue, conserved across most PGI enzymes but substituted for glycine in B. bacteriovorus and other select organisms, is central to the induced-fit mode of substrate recognition for PGIs. This enzyme also represents the smallest conventional PGI characterized to date and probably represents the minimal requirements for a functional PGI.  相似文献   

19.
On the analysis of futile cycles in metabolism   总被引:2,自引:0,他引:2  
So-called futile cycles in cellular metabolism consist of paired opposing reactions that, if simultaneously operant, act only to degrade free energy of ATP to heat. Previous considerations of the behavior of such substrate cycles have indicated their possible usefulness in regulating flux along metabolic pathways, but such analyses have treated the cycles in isolation, i.e. without taking into account the effects of enzymatic inputs to and outputs from the cycle. We here develop models of three typical substrate cycles that include enzymatic inputs to and outputs from the cycle and allow the enzymes of the cycles per se to be subject to a variety of allosteric modulations. The non-linear equations which describe these models were solved by an iterative procedure for sets of parameter values of metabolic interest. The results, when analyzed using appropriate definitions of regulatory sensitivity and energetic futility, demonstrate that the effects of the enzymes leading into and out of the cycle may cause profound changes in the operation of the substrate cycle and therefore may not be ignored. We find that the structural differences among the three cycles considered here result in corresponding functional differences. Our results suggest that (1) the fructose-6-P/fructose-1,6-di-P cycle acts effectively to gate bidirectional flux, but doesn't appreciably enhance regulation of unidirectional flux, (2) the glucose/glucose-6-P cycle is well suited to perform a homeostatic function and to adjust the set points for these two metabolites, and (3) the cycle at the pyruvate crossroads functions largely as a complex switch box that directs metabolic flow towards gluconeogenesis or glycolysis not only in response to inputs of or requirements for oxaloacetate, pyruvate, and phosphoenolpyruvate, but also in response to the combined action of allosteric modulators on the individual enzymes of this substrate cycle.  相似文献   

20.
Biocatalysis offers opportunities for highly selective chemical reactions with high turnover rates under relatively mild conditions. Use of whole-cell or multi-enzyme systems enables transformations of complexity unmatched by nonbiological routes. However, advantages of biocatalysis are frequently compromised by poor enzymatic performance under non-native reaction conditions, the absence of enzymes with desired substrate or reaction specificities, and low metabolic fluxes or competing pathways. During the 234th National Meeting of the American Chemical Society, these issues were addressed in the "Advances in Biocatalysis" sessions. Protein engineering and metabolic pathway engineering were used to develop efficient enzymes and whole-cell catalysts. Novel strategies for the use of enzymes at solid interfaces and in nonaqueous environments were discussed, and efficient biotransformation platforms were demonstrated. These advances broaden the applications of biocatalysis in biofuels, pharmaceuticals, fine chemicals, and human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号