首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diaz, Véronique, Irenej Kianicka, PatrickLetourneau, and Jean-Paul Praud. Inferior pharyngealconstrictor electromyographic activity during permeability pulmonaryedema in lambs. J. Appl. Physiol. 81(4): 1598-1604, 1996.Newborn mammals exhibit an active expiratory upper airwayclosure during the first hours of extrauterine life. We have recentlyshown that permeability pulmonary edema led to active expiratoryglottic closure in awake newborn lambs while hypoxia (inspiredO2 fraction 8%; 15 min) did not. In the presentstudy, we tested the hypothesis that expiratory glottic closure wasaccompanied by an increase in pharyngeal constrictor muscle expiratoryelectromyographic (EMG) activity. We studied seven awake nonsedatedlambs aged 8-20 days. Airflow (facial mask + pneumotachograph),blood gases (arterial catheter), and EMG activity of both thethyroarytenoid muscle (a glottic adductor) and the inferior pharyngealconstrictor muscle were recorded before and after intravenous injectionof halothane (0.05 ml/kg) to induce a permeability pulmonary edema. Acentral apnea (duration 15 s to 5 min) with continuous thyroarytenoidand inferior pharyngeal constrictor activity was observed withinseconds after halothane injection. One lamb died despite rescuingmaneuvers. An expiratory phasic thyroarytenoid and inferior pharyngealconstrictor muscle activity with simultaneous zero airflow graduallytook place and, by 30 min after halothane injection, was present ateach expiration in the six remaining lambs. Expiratory glottic andpharyngeal constrictor muscle EMG activity was subsequently presentduring the whole study period (1.5-5 h), even after correction ofthe initial hypoxia. Permeability lung edema was present at postmortem examination in all seven lambs. We conclude that a permeability pulmonary edema induced by intravenous halothane in nonsedated lambsenhances both glottic and pharyngeal constrictor muscle expiratory EMG.We hypothesize that expiratory contraction of the inferior pharyngealconstrictor muscle could participate in the active expiratory upperairway closure; this, in turn, might improve alveolocapillary gasexchange by increasing the end-expiratory lung volume.

  相似文献   

2.
3.
Reorganization of the parameters of efferent activity produced in the spinal generator by electrical stimulation of the ipsilateral hindlimb muscle nerves during different limb positions were investigated in decerebrate immobilized cats. A direct relationship was found between this reordering and the stage at which stimuli were applied. The rearranged duration of the scratch cycle showed a tendency to bring motor activity into phase with stimuli so that the stimulus falls due at the onset of the motor activity phase. This phasically collated rearrangement was observed where a shift had occurred in the relationship between "aiming" and "scratch" motion tending towards intensified activity in the muscles innervated by the stimulated nerve. Rearrangement became more evident when the hindlimb deflected from the target position in accordance with the direction of muscle stretching. The physiological significance of the interposition of the "no rearrangement" phase is discussed. It is deduced that this absence of change in duration and intensity can only be produced simultaneously when a certain relationship is achieved between the phase of afferent signal reception in the scratch cycle and signal intensity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 372–382, May–June, 1987.  相似文献   

4.
5.
The mechanicaleffects of pharyngeal constrictor (PC) muscle activation on pharyngealairway function were determined in 20 decerebrate, tracheotomized cats.In 10 cats, a high-compliance balloon attached to a pressure transducerwas partially inflated to just occlude the pharyngeal airway. Duringprogressive hyperoxic hypercapnia, changes in pharyngeal balloonpressure were directly related to phasic expiratory hyopharyngeus(middle PC) activity. In two separate protocols in 10 additional cats,the following measurements were obtained with and without bilateralelectrical stimulation (0.2-ms duration, threshold voltage) of thedistal cut end of the vagus nerve's pharyngeal branch supplying PCmotor output: 1) pressure-volumerelationships in an isolated, sealed upper airway at a stimulationfrequency of 30 Hz and 2) rostrally directed axial force over a stimulation frequency range of 0-40 Hz. Airway compliance determined from the pressure-volume relationships decreased with PC stimulation at and below resting airway volume. Compared with the unstimulated condition, PC stimulation increased airway pressure at airway volumes at and above resting volume. Thisconstrictor effect progressively diminished as airway volume wasbrought below resting volume. At relatively low airway volumes belowresting volume, PC stimulation decreased airway pressure compared withthat without stimulation. PC stimulation generated a rostrally directedaxial force that was directly related to stimulation frequency. Theresults indicate that PC activation stiffens the pharyngeal airway,exerting both radial and axial effects. The radial effects aredependent on airway volume: constriction of the airway at relativelyhigh airway volumes, and dilation of the airway at relatively lowairway volumes. The results imply that, under certain conditions, PCmuscle activation may promote pharyngeal airway patency.

  相似文献   

6.
Regional variations in the discharge patterns of the internal and external intercostal muscles of the middle and caudad thorax were studied in decerebrate, spontaneously breathing cats during coughing and vomiting. Coughing, induced by electrical stimulation of the superior laryngeal nerves, consisted of increased and prolonged diaphragmatic activity followed by a burst of abdominal activity. Mid-thoracic external and internal intercostal muscles discharged synchronously with the diaphragm and abdominal muscles, respectively. Caudal external and internal intercostal muscles, however, discharged synchronously with the abdominal muscles. Vomiting, induced by stimulation of the lower thoracic vagi, consisted of a series of synchronous bursts of diaphragmatic and abdominal activity (retching) followed by a prolonged abdominal discharge after the cessation of diaphragmatic activity (expulsion). Caudal external and internal intercostals discharged in phase with diaphragmatic and abdominal activity but both mid-thoracic intercostal muscles discharged out of phase with these muscles. These results indicate major differences in the control and functional roles of intercostal muscles at different thoracic levels during these behaviours.  相似文献   

7.
The respiratory pattern of gasping has been characterized on the phrenic nerve as rapidonset, rapid-rise, large-amplitude bursts of neural activity. Furthermore, medullary sites critical for the neurogenesis of gasping have been identified and are not the sites of identified respiratory neurons, such as the dorsal and ventral respiratory groups. I classified envelopes of phrenic nerve activity as eupneic breaths, or gasps based on the time-domain features of duration, shape, and amplitude. Gasps were elicited by hypoxia and low blood pressure in 9 of 12 decerebrate cats. Inspiratory times were 1.15 +/- 0.43 (SD) for eupneic breaths and 0.55 +/- 0.18s for gasps. The high-frequency peaks in the power spectra of phrenic nerve activity were at 80 +/- 13 Hz for eupneic breaths and at 120 +/- 21 Hz for gasps. Three of the 12 cats developed a breathing pattern that began as a normal breath and terminated in a gasp. Power spectra of the normal portion had eupneic spectral peaks (75 +/- 24 Hz); power spectra of the gasp portion had the high peaks at 110 +/- 23 Hz, a value 1.5 times higher than that for the normal peaks. Although this analysis of peripheral nerve activity cannot distinguish between two central pattern generators at two distinct anatomical sites or one pattern generator operating in two distinct modes, the fact that gasps were much shorter in duration and had markedly higher spectral peaks than control breaths supports the idea that the central pattern generator for gasping is not the central pattern generator for eupnea.  相似文献   

8.
We undertook the present investigation to establish whether narrowing/closure of the upper airway occurs during spontaneous and provoked respiratory rhythm disturbances and whether pharyngeal constrictor muscle recruitment occurs coincident with upper airway occlusion during prolonged expiratory periods. Upper airway pressure-flow relationships and middle pharyngeal constrictor (mPC) EMG activities were recorded in 11 adult female goats during spontaneous and provoked prolongations in expiratory time (Te). A total of 213 spontaneous prolongations of expiration were recorded. Additionally, 169 prolonged expiratory events preceded by an augmented breath were included in the analyses. In separate trials on different days, Te was prolonged by systemic administration of dopamine, by raising the inspired fraction of O(2) from 0.10 to 1.00 during poikilocapnic conditions or by systemic administration of clonidine. Continuous tonic activation of the mPC EMG was observed during each prolonged Te period regardless of the duration or initiating cause. However, significant increases in subglottic tracheal pressure, with expiratory airflow braking indicative of upper airway narrowing or closure, was only observed during spontaneous events without a preceding augmented breath and during clonidine-induced events. Tonic mPC activation proved an unreliable indicator of airway occlusion. Furthermore, mPC muscle activation alone is not sufficient to induce pharyngeal occlusion during prolonged expiration. Our data suggest that airway closure is not a common occurrence during provoked respiratory disturbances in awake goats. We propose that airway closure, when present during prolonged Te, is more likely dependent on activation of laryngeal adductor muscles with glottic braking independent of pharyngeal narrowing.  相似文献   

9.
Plastic surgeons aim to correct velopharyngeal insufficiency manifest by hypernasal speech with a velopharyngoplasty. The functional outcome has been reported to be worse in patients with 22q11.2 deletion syndrome than in patients without the syndrome. A possible explanation is the hypotonia that is often present as part of the syndrome. To confirm a myogenic component of the etiology of velopharyngeal insufficiency in children with 22q11.2 deletion syndrome, specimens of the pharyngeal constrictor muscle were taken from children with and without the syndrome. Histologic properties were compared between the groups. Specimens from the two groups did not differ regarding the presence of increased perimysial or endomysial space, fiber grouping by size or type, internalized nuclei, the percentage type I fibers, or the diameters of type I and type II fibers. In conclusion, a myogenic component of the etiology of velopharyngeal insufficiency in children with 22q11.2 deletion syndrome could not be confirmed.  相似文献   

10.
The influence of tonic afferent inflow as conditioned by ipsilateral hindlimb position on the efferent activity parameters of the spinal generator governing scratching motion was investigated in immobilized decerebrate cats. A significant correlation was observed between motor activity parameters and ensuing bouts of scratching in the absence of afferent flow (after deafferentation of the limbs). This correlation was less pronounced when afferentation remained intact and declined when the limb was shifted from the "aimed" to either the "overaimed" or "deflecting backwards" placing of the limb. The statistically significant correlations found between the parameters of different stages of motor activity and their dependence on hindlimb positions during actual scratching could be responsible for the stability of intended placing of the limbs during the performance of oscillatory movements. Hindlimb deafferentation would appear closest to "aimed" position judging by the parameters of efferent activity and the nature of correlations between them.A. A. Bogomolets Institute of Physiology. Academy of Sciences of the Ukrainian SSR. Kiev. Translated from Neirofiziologiya, Vol. 15, No. 5, pp. 636–645, September–October, 1986.  相似文献   

11.
In part, the exercise pressor reflex is believed to be evoked by chemical stimuli signaling that blood supply to exercising muscles is not adequate to meet its metabolic demands. There is evidence that either ATP or adenosine may function as one of these chemical stimuli. For example, muscle interstitial concentrations of both substances have been found to increase during exercise. This finding led us to test the hypothesis that popliteal arterial injection of alpha,beta-methylene ATP (5, 20, and 50 microg/kg), which stimulates P2X receptors, and 2-chloroadenosine (25 microg/kg), which stimulates P1 receptors, evokes reflex pressor responses in decerebrate, unanesthetized cats. We found that popliteal arterial injection of the two highest doses of alpha,beta-methylene ATP evoked pressor responses, whereas popliteal arterial injection of 2-chloroadenosine did not. In addition, the pressor responses evoked by alpha,beta-methylene ATP were blocked either by section of the sciatic nerve or by prior popliteal arterial injection of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (10 mg/kg), a selective P2-receptor antagonist. We conclude that the stimulation of P2 receptors, which are accessible through the vascular supply of skeletal muscle, evokes reflex pressor responses. In addition, our findings are consistent with the hypothesis that the stimulation of P2 receptors comprises part of the metabolic error signal evoking the exercise pressor reflex.  相似文献   

12.
To examine whether withdrawal of cardiac vagal efferent nerve activity (CVNA) predominantly controls the tachycardia at the start of exercise, the responses of CVNA and cardiac sympathetic efferent nerve activity (CSNA) were directly assessed during fictive motor activity that occurred spontaneously in unanesthetized, decerebrate cats. CSNA abruptly increased by 71 ± 12% at the onset of the motor activity, preceding the tachycardia response. The increase in CSNA lasted for 4-5 s and returned to the baseline, even though the motor activity was not ended. The increase of 6 ± 1 beats/min in heart rate appeared with the same time course of the increase in CSNA. In contrast, CVNA never decreased but increased throughout the motor activity, in parallel with a rise in mean arterial blood pressure (MAP). The peak increase in CVNA was 37 ± 9% at 5 s after the motor onset. The rise in MAP gradually developed to 21 ± 2 mmHg and was sustained throughout the spontaneous motor activity. Partial sinoaortic denervation (SAD) blunted the baroreflex sensitivity of the MAP-CSNA and MAP-CVNA relationship to 22-33% of the control. Although partial SAD blunted the initial increase in CSNA to 53% of the control, the increase in CSNA was sustained throughout the motor activity. In contrast, partial SAD almost abolished the increase in CVNA during the motor activity, despite the augmented elevation of 31 ± 1 mmHg in MAP. Because afferent inputs from both muscle receptors and arterial baroreceptors were absent or greatly attenuated in the partial SAD condition, only central command was operating during spontaneous fictive motor activity in decerebrate cats. Therefore, it is likely that central command causes activation of cardiac sympathetic outflow but does not produce withdrawal of cardiac parasympathetic outflow during spontaneous motor activity.  相似文献   

13.
14.
15.
16.
17.
A previously reported central neural respiratory control process was restudied in unanesthetized decerebrate cats during spontaneous breathing, and during conditions of constant chemical stimulation where phrenic nerve activity was used to quantitate respiratory output. Respiration was increased by carotid sinus nerve stimulation. The pattern of respiration was examined at the cessation of such stimulation. In spontaneously breathing animals, active hyperventilation (HV) was followed by hyperpnea for up to 30 s and never by apnea. Passive HV was always followed by apnea. In animals with controlled chemical conditions, the transient at the end of stimulation consisted of two components, the first an immediate decrease in respiratory output and the second a slow decrease with a period of over 5 m. It is suggested that a facilitatory feedback process, probably located in the reticular activating system, maintains respiratory output for some time after cessation of a stimulus. This study duplicates the results of previous studies and shows that no area of the brain above the pons is required for the mechanism's operation.  相似文献   

18.
The electromyographic activity of the glossal, suprahyoid, infrahyoid, and pharyngeal muscles was examined during spontaneous respiration in rabbits anesthetized with ketamine hydrochloride. This activity was then correlated with phases of the respiratory cycle. Our findings indicate that the overwhelming majority of the muscles comprising these groups show activity that increased during inspiration and returns to the background level during expiration and the end-expiratory pause. The exceptions are the inferior pharyngeal constrictor muscle, which demonstrates increased activity during expiration and the end-expiratory pause, and the stylohyoid major and digastric muscles, whose activity was not modulated with respiration. In general, the results obtained under ketamine anesthesia are in agreement with the studies on a more limited number of muscles in humans during sleep or in animal studies utilizing light anesthesia. Furthermore, the use of ketamine avoids the central suppressant effects produced by barbituate anesthesia. It has been argued that the upper airway muscles are rhythmically active during respiration to maintain the patency of the upper airway. Both the number of muscles that are rhythmically active and their strict correlation with specific phases of the respiratory cycle suggest that the forces exerted on the upper airway are complex and that peak tension is generated during inspiration. Further studies are required to evaluate the effects of ketamine anesthesia on these upper airway muscles before this rabbit model can be utilized to examine respiratory disorders of the upper airway.  相似文献   

19.
Pharmacokinetic parameters of a ketamine (10 mg/kg, iv) bolus in decerebrate and intact cats were compared. A two-compartment open model best described the data in both groups. The apparent volume of distribution of the peripheral compartment, the apparent volume of distribution of the drug in the body, and the half-life of the postdistributive phase were significantly less (p less than 0.05) in the decerebrate animals. These results emphasize the importance of correlating behavior and neuronal activity with plasma or blood concentrations of drug in animals rather than assuming that, for a given drug dose, blood (and thus tissue) levels of the agent will be similar regardless of how the animal is prepared for study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号