首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human pathogen Pseudomonas aeruginosa has been shown previously to use similar virulence factors when infecting mammalian hosts or Dictyostelium amoebae. Here we randomly mutagenized a clinical isolate of P. aeruginosa , and identified mutants with attenuated virulence towards Dictyostelium . These mutant strains also exhibited a strong decrease in virulence when infecting Drosophila and mice, confirming that P. aeruginosa makes use of similar virulence traits to confront these very different hosts. Further characterization of these bacterial mutants showed that TrpD is important for the induction of the quorum-sensing circuit, while PchH and PchI are involved in the induction of the type III secretion system. These results demonstrate the usefulness and the relevance of the Dictyostelium host model to identify and analyse new virulence genes in P. aeruginosa .  相似文献   

2.
The bacterial pathogen Listeria monocytogenes survives under a myriad of conditions in the outside environment and within the human host where infections can result in severe disease. Bacterial life within the host requires the expression of genes with roles in nutrient acquisition as well as the biosynthesis of bacterial products required to support intracellular growth. A gene product identified as the substrate-binding component of a novel oligopeptide transport system (encoded by lmo0135 ) was recently shown to be required for L. monocytogenes virulence. Here we demonstrate that lmo0135 encodes a multifunctional protein that is associated with cysteine transport, acid resistance, bacterial membrane integrity and adherence to host cells. The lmo0135 gene product (designated CtaP, for c ysteine t ransport a ssociated p rotein) was required for bacterial growth in the presence of low concentrations of cysteine in vitro , but was not required for bacterial replication within the host cytosol. Loss of CtaP increased membrane permeability and acid sensitivity, and reduced bacterial adherence to host cells. ctaP deletion mutants were severely attenuated following intragastric and intravenous inoculation of mice. Taken together, the data presented indicate that CtaP contributes to multiple facets of L. monocytogenes physiology, growth and survival both inside and outside of animal cells.  相似文献   

3.
Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host’s immune system influences the pathogen’s transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence–transmission trade-offs and evolution in vector-borne pathogen–host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the \({\mathcal {R}}_0\) maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen \({\mathcal {R}}_0\), but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.  相似文献   

4.
Salmonella enterica serovar typhimurium translocates a glycerophospholipid:cholesterol acyltransferase (SseJ) into the host cytosol after its entry into mammalian cells. SseJ is recruited to the cytoplasmic face of the host cell phagosome membrane where it is activated upon binding the small GTPase, RhoA. SseJ is regulated similarly to cognate eukaryotic effectors, as only the GTP-bound form of RhoA family members stimulates enzymatic activity. Using NMR and biochemistry, this work demonstrates that SseJ competes effectively with Rhotekin, ROCK, and PKN1 in binding to a similar RhoA surface. The RhoA surface that binds SseJ includes the regulatory switch regions that control activation of mammalian effectors. These data were used to create RhoA mutants with altered SseJ binding and activation. This structure-function analysis supports a model in which SseJ activation occurs predominantly through binding to residues within switch region II. We further defined the nature of the interaction between SseJ and RhoA by constructing SseJ mutants in the RhoA binding surface. These data indicate that SseJ binding to RhoA is required for recruitment of SseJ to the endosomal network and for full Salmonella virulence for inbred susceptible mice, indicating that regulation of SseJ by small GTPases is an important virulence strategy of this bacterial pathogen. The dependence of a bacterial effector on regulation by a mammalian GTPase defines further how intimately host pathogen interactions have coevolved through similar and divergent evolutionary strategies.  相似文献   

5.
Virulence is described as an ability of an organism to infect the host and cause a disease. Virulence factors are the molecules that assist the bacterium colonize the host at the cellular level. These factors are either secretory, membrane associated or cytosolic in nature. The cytosolic factors facilitate the bacterium to undergo quick adaptive—metabolic, physiological and morphological shifts. The membrane associated virulence factors aid the bacterium in adhesion and evasion of the host cell. The secretory factors are important components of bacterial armoury which help the bacterium wade through the innate and adaptive immune response mounted within the host. In extracellular pathogens, the secretory virulence factors act synergistically to kill the host cells. In this review, we revisit the role of some of the secreted virulence factors of two human pathogens: Mycobacterium tuberculosis—an intracellular pathogen and Bacillus anthracis—an extracellular pathogen. The advances in research on the role of secretory factors of these pathogens during infection are discussed.  相似文献   

6.
A study by Gandon et al. (2001) considered the potential ways pathogens may evolve in response to vaccination with imperfect vaccines. In this paper, by focusing on acute infections of vertebrate hosts, we examine whether imperfect vaccines that do not completely block a pathogen's replication (antigrowth) or transmission (antitransmission) may lead to evolution of more or less virulent pathogen strains. To address this question, we use models of the within-host dynamics of the pathogen and the host's immune responses. One advantage of the use of this within-host approach is that vaccination can be easily incorporated in the models and the trade-offs between pathogen transmissibility, host recovery, and virulence that drive evolution of pathogens in these models can be easily estimated. We find that the use of either antigrowth or antitransmission vaccines leads to the evolution of pathogens with an increased within-host growth rate; infection of unvaccinated hosts with such evolved pathogens results in high host mortality and low pathogen transmission. Vaccination of only a fraction of hosts with antigrowth vaccines may prevent pathogens from evolving high virulence due to pathogen adaptation to unvaccinated hosts and thus protection of vaccinated hosts from pathogen-induced disease. In contrast, antitransmission vaccines may be beneficial only if they are effective enough to cause pathogen extinction. Our results suggest that particular mechanisms of action of vaccines and their efficacy are crucial in predicting longterm evolutionary consequences of the use of imperfect vaccines.  相似文献   

7.
The patterns of immunity conferred by host sex or age represent two sources of host heterogeneity that can potentially shape the evolutionary trajectory of disease. With each host sex or age encountered, a pathogen's optimal exploitative strategy may change, leading to considerable variation in expression of pathogen transmission and virulence. To date, these host characteristics have been studied in the context of host fitness alone, overlooking the effects of host sex and age on the fundamental virulence–transmission trade‐off faced by pathogens. Here, we explicitly address the interaction of these characteristics and find that host sex and age at exposure to a pathogen affect age‐specific patterns of mortality and the balance between pathogen transmission and virulence. When infecting age‐structured male and female Daphnia magna with different genotypes of Pasteuria ramosa, we found that infection increased mortality rates across all age classes for females, whereas mortality only increased in the earliest age class for males. Female hosts allowed a variety of trade‐offs between transmission and virulence to arise with each age and pathogen genotype. In contrast, this variation was dampened in males, with pathogens exhibiting declines in both virulence and transmission with increasing host age. Our results suggest that differences in exploitation potential of males and females to a pathogen can interact with host age to allow different virulence strategies to coexist, and illustrate the potential for these widespread sources of host heterogeneity to direct the evolution of disease in natural populations.  相似文献   

8.
The facultative intracellular bacterial pathogen Listeria monocytogenes dramatically increases the expression of several key virulence factors upon entry into the host cell cytosol. actA, the protein product of which is required for cell-to-cell spread of the bacterium, is expressed at low to undetectable levels in vitro and increases in expression more than 200-fold after L. monocytogenes escape from the phagosome. To identify bacterial factors that participate in the intracellular induction of actA expression, L. monocytogenes mutants expressing high levels of actA during in vitro growth were selected after chemical mutagenesis. The resulting mutant isolates displayed a wide range of actA expression levels, and many were less sensitive to environmental signals that normally mediate repression of virulence gene expression. Several isolates contained mutations affecting actA gene expression that mapped at least 40 kb outside the PrfA regulon, supporting the existence of additional regulatory factors that contribute to virulence gene expression. Two actA in vitro expression mutants contained novel mutations within PrfA, a key regulator of L. monocytogenes virulence gene expression. PrfA E77K and PrfA G155S mutations resulted in high-level expression of PrfA-dependent genes, increased bacterial invasion of epithelial cells and increased virulence in mice. Both prfA mutant strains were significantly less motile than wild-type L. monocytogenes. These results suggest that, although constitutive activation of PrfA and PrfA-dependent gene expression may enhance L. monocytogenes virulence, it may conversely hamper the bacterium's ability to compete in environments outside host cells.  相似文献   

9.
Several strains of the human opportunistic pathogen Pseudomonas aeruginosa infect plants, nematodes and insects. Our laboratory has developed a multihost pathogenesis system based on the P. aeruginosa clinical isolate PA14, in which non-mammalian hosts are used to screen directly for virulence-attenuated mutants. The majority of PA14 mutants isolated using non-mammalian hosts also displayed reduced virulence in a burned mouse model. Surprisingly, only a few host-specific virulence factors were identified, and many of the P. aeruginosa mutants were attenuated in virulence in all the hosts. These studies illustrate the extensive conservation in the virulence mechanisms used by P. aeruginosa to infect evolutionarily diverged hosts, and validate the multihost method of screening for virulence factors relevant to mammalian pathogenesis. Through the use of genetically tractable hosts, the multihost pathogenesis model also provides tools for elucidating host responses and dissecting the fundamental molecular interactions that underlie bacterial pathogenesis.  相似文献   

10.
Structure in a population of host individuals, whether spatial or temporal, can have important effects on the transmission and evolutionary dynamics of its pathogens. One of these is to limit dispersal of pathogens and thus increase the amount of contact between a given pair or within a small group of host individuals. We introduce a “law of diminishing returns” that predicts an evolutionary decline of pathogen virulence whenever there are on average more possibilities of pathogen transmission between the same pair of hosts. Thus, the effect of repeated contact between hosts will be to shift the balance of any trade-off between virulence and transmissibility toward lower virulence.  相似文献   

11.
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.  相似文献   

12.
The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded off with bacterial virulence factors, such as motility or resource use efficiency. However, the host survival depended also on its allocation to warning signal that is used against avian predation. When infected with most virulent ancestral bacterial strain, host larvae with a small warning signal survived better than those with an effective large signal. This suggests that larval immune defence could be traded off with effective defence against bird predators. However, the signal size had no effect on larval survival when less virulent control or evolved strains were used for infection suggesting that anti-predatory defence against avian predators, might be less constrained when the invading pathogen is rather low in virulence. Our results demonstrate that predation can be important indirect driver of the evolution of both pathogen virulence and host immunity in communities with multiple species interactions. Thus, the pathogen virulence should be viewed as a result of both past evolutionary history, and current ecological interactions.  相似文献   

13.
Many of the genes responsible for the virulence of bacterial pathogens are carried by mobile genetic elements that can be transferred horizontally between different bacterial lineages. Horizontal transfer of virulence-factor genes has played a profound role in the evolution of bacterial pathogens, but it is poorly understood why these genes are so often mobile. Here, I present a hypothetical selective mechanism maintaining virulence-factor genes on horizontally transmissible genetic elements. For virulence factors that are secreted extracellularly, selection within hosts may favour mutant 'cheater' strains of the pathogen that do not produce the virulence factor themselves but still benefit from factors produced by other members of the pathogen population within a host. Using simple mathematical models, I show that if this occurs then selection for infectious transmission between hosts favours pathogen strains that can reintroduce functional copies of virulence-factor genes into cheaters via horizontal transfer, forcing them to produce the virulence factor. Horizontal gene transfer is thus a novel mechanism for the evolution of cooperation. I discuss predictions of this hypothesis that can be tested empirically and its implications for the evolution of pathogen virulence.  相似文献   

14.
Bacterial virulence is a multifaceted trait where the interactions between pathogen and host factors affect the severity and outcome of the infection. Toxin secretion is central to the biology of many bacterial pathogens and is widely accepted as playing a crucial role in disease pathology. To understand the relationship between toxicity and bacterial virulence in greater depth, we studied two sequenced collections of the major human pathogen Staphylococcus aureus and found an unexpected inverse correlation between bacterial toxicity and disease severity. By applying a functional genomics approach, we identified several novel toxicity-affecting loci responsible for the wide range in toxic phenotypes observed within these collections. To understand the apparent higher propensity of low toxicity isolates to cause bacteraemia, we performed several functional assays, and our findings suggest that within-host fitness differences between high- and low-toxicity isolates in human serum is a contributing factor. As invasive infections, such as bacteraemia, limit the opportunities for onward transmission, highly toxic strains could gain an additional between-host fitness advantage, potentially contributing to the maintenance of toxicity at the population level. Our results clearly demonstrate how evolutionary trade-offs between toxicity, relative fitness, and transmissibility are critical for understanding the multifaceted nature of bacterial virulence.  相似文献   

15.
16.
Pectobacterium carotovorum (formerly Erwinia carotovora ssp. carotovora) is a phytopathogenic bacterium that causes soft rot disease, characterized by water-soaked soft decay, resulting from the action of cell wall-degrading exoenzymes secreted by the pathogen. Virulence in soft rot bacteria is regulated by environmental factors, host and bacterial chemical signals, and a network of global and gene-specific bacterial regulators. We isolated a mini-Tn5 mutant of P. carotovorum that is reduced in the production of extracellular pectate lyase, protease, polygalacturonase and cellulase. The mutant is also decreased in virulence as it macerates less host tissues than its parent and is severely impaired in multiplication in planta. The inactivated gene responsible for the reduced virulent phenotype was identified as corA. CorA, a magnesium/nickel/cobalt membrane transporter, is the primary magnesium transporter for many bacteria. Compared with the parent, the CorA(-) mutant is cobalt resistant. The mutant phenotype was confirmed in parental strain P. carotovorum by marker exchange inactivation of corA. A functional corA(+) DNA from P. carotovorum restored exoenzyme production and pathogenicity to the mutants. The P. carotovorum corA(+) clone also restored motility and cobalt sensitivity to a CorA(-) mutant of Salmonella enterica. These data indicate that CorA is required for exoenzyme production and virulence in P. carotovorum.  相似文献   

17.
18.
We are exploiting the broad host range of the human opportunistic pathogen Pseudomonas aeruginosa strain PA14 to elucidate the molecular basis of bacterial virulence in plants, nematodes, insects and mice. In this report, we characterize the role that two PA14 gene products, MucD and AlgD, play in virulence. MucD is orthologous to the Escherichia coli periplasmic protease and chaperone DegP. DegP homologues are known virulence factors that play a protective role in stress responses in various species. AlgD is an enzyme involved in the biosynthesis of the exopolysaccharide alginate, which is hyperinduced in mucD mutants. A PA14 mucD mutant was significantly impaired in its ability to cause disease in Arabidopsis thaliana and mice and to kill the nematode Caenorhabditis elegans. Moreover, MucD was found to be required for the production of an extracellular toxin involved in C. elegans killing. In contrast, a PA14 algD mutant was not impaired in virulence in plants, nematodes or mice. A mucDalgD double mutant had the same phenotype as the mucD single mutant in the plant and nematode pathogenesis models. However, the mucDalgD double mutant was synergistically reduced in virulence in mice, suggesting that alginate can partially compensate for the loss of MucD function in mouse pathogenesis.  相似文献   

19.
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS) to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative γ-glutamyl transpeptidase (GGT). This gene (FTL_0766) was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, γ-glutamyl-cysteinyl-glycine) and γ-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria–host adaptation.  相似文献   

20.
Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease of tomato and pepper. The disease process is interactive and very intricate and involves a plethora of genes in the pathogen and in the host. In the pathogen, different genes are activated in response to the changing environment to enable it to survive, adapt, evade host defenses, propagate, and damage the host. To understand the disease process, it is imperative to broaden our understanding of the gene machinery that participates in it, and the most reliable way is to identify these genes in vivo. Here, we have adapted a recombinase-based in vivo expression technology (RIVET) to study the genes activated in X. campestris pv. vesicatoria during its interaction with one of its hosts, tomato. This is the first study that demonstrates the feasibility of this approach for identifying in vivo induced genes in a plant pathogen. RIVET revealed 61 unique X. campestris pv. vesicatoria genes or operons that delineate a picture of the different processes involved in the pathogen-host interaction. To further explore the role of some of these genes, we generated knockout mutants for 13 genes and characterized their ability to grow in planta and to cause disease symptoms. This analysis revealed several genes that may be important for the interaction of the pathogen with its host, including a citH homologue gene, encoding a citrate transporter, which was shown to be required for wild-type levels of virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号