首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enantioselective acetylation (desymmetrization) of prochiral 2-(ferrocenylmethyl)propane-1,2-diol (1), 2-(2-ferrocenylethyl)propane-1,2-diol (2) and 2-(3-ferrocenylpropyl)propane-1,2-diol (3) into chiral monoacetates [(+)-4-(+)-6], with a series of microbial lipases in benzene at 27°C, revealed the lipase from Pseudomonas sp (PSL) as the most selective. Acetylation was fastest and most enantioselective for conversion 1→(+)-4 by PSL (97% e.e.). By comparison of the compounds (+)-4-(+)-6 with their benzene analogues of the known (R) absolute configuration, on the basis of their elution orders on Chiracel OD, and the same direction of their optical rotations, an R-configuration is proposed for (+)-monoacetates 4–6.  相似文献   

2.
《Phytochemistry》1999,52(7):1307-1312
A phenylpropanoid, threo-3-chloro-1-(4-hydroxy-3-methoxyphenyl)propane-1,2-diol, was isolated from the berries of Pimenta dioica together with five known compounds, eugenol, 4-hydroxy-3-methoxycinnamaldehyde, 3,4-dimethoxycinnamaldehyde, vanillin and 3-(4-hydroxy-3-methoxyphenyl)propane-1,2-diol. In addition, the stereochemistry of 3-(4-hydroxy-3-methoxyphenyl)propane-1,2-diol was determined. The phenylpropanoids inhibited autoxidation of linoleic acid in a water-alcohol system.  相似文献   

3.
Synthesis of lobucavir prodrug, L-valine, [(1S,2R,3R)-3-(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)-2-(hydroxymethyl)cyclobutyl]methyl ester monohydrochloride (BMS 233866), requires regioselective coupling of one of the two hydroxyl groups of lobucavir (BMS 180194) with valine. Either hydroxyl group of lobucavir could be selectively aminoacylated with valine by using enzymatic reactions. N-[(Phenylmethoxy)carbonyl]-L-valine, [(1R,2R,4S)-2-(2-amino-6-oxo-1H-purin-9-yl)-4-(hydroxymethyl)cyclobutyl]methyl ester (3, 82.5% yield), was obtained by selective hydrolysis of N,N′-bis[(phenylmethoxy)carbonyl]bis[L-valine], O,O′-[(1S,2R,3R)-3-(2-amino-6-oxo-1H-purin-9-yl)cyclobuta-1,2-diyl]methyl ester (1) with lipase M, and L-valine, [(1R,2R,4S)-2-(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)-4-(hydroxymethyl)cyclobutyl]methyl ester monohydrochloride (4, 87% yield) was obtained by hydrolysis of bis[L-valine], O,O′-[(1S,2R,3R)-3-(2-amino-6-oxo-1H-purin-9-yl)cyclobuta-1,2-diyl]methyl ester, dihydrochloride (2), with lipase from Candida cylindracea. The final intermediate for lobucavir prodrug, N-[(phenylmethoxy)carbonyl]-L-valine, [(1S,2R,4R)-3-(2-amino-6-oxo-1H-purin-9-yl)-2-(hydroxymethyl)cyclobutyl]methyl ester (5), could be obtained by transesterification of lobucavir using ChiroCLEC™ BL (61% yield), or more selectively by using immobilized lipase from Pseudomonas cepacia (84% yield).  相似文献   

4.
The fungal laccases catalyzed oxidation of 1-(3,4-dimethoxyphenyl)-1-propene (2) with dioxygen in acetate buffer (pH 4.5) producing 1-(3,4-dimethoxyphenyl)propane-1,2-diol (4) and its 1-O-acetyl and 2-O-acetyl derivatives 5 and 6, and 3,4-dimethoxybenzaldehyde (7). However, in phosphate buffer (pH 5.9), the same reaction produced only 4 and 7. When 4 was treated in the same fashion in the phosphate buffer, it was converted into 7 with more than 95 mol% yield. This, together with the formation of 5 and 6 in the acetate buffer, showed that 2 is converted into 3–5 via 1-(3,4-dimethoxyphenyl)propane-1,2-epoxide (3) in the acetate buffer in the presence of ABTS. The major reaction of fungal laccase-catalyzed oxidation of 2 with dioxygen in the presence of ABTS is epoxidation of the double bond conjugated to the aromatic ring.  相似文献   

5.
Five lignans have been isolated from wood of Larix leptolepis. They are identified as 1-(4-hydroxy-3-methoxyphenyl)-2-4-[2-formyl-(E)-vinyl]-2-methoxyphenoxy-propane- 1,3-diol, 1-(4-hydroxy-3-methoxyphenyl)-2-2-methoxy-4-[1-(E)-propen-3-ol]-phenoxy- propane-1,3-diol, 1-(4-hydroxy-3-methoxyphenyl)-2-(4-formyl-2-methoxyphenoxy)-propane-1,3-diol, 1,2-bis-(4-hydroxy-3-methoxyphenyl)-propane-1,3-diol and a trilignol, leptolepisol C.  相似文献   

6.
Whole cells of Rhodococcus erythropolis DSM 44534 grown on ethanol, (R)- and (S)-1,2-propanediol were used for biotransformation of racemic 1,4-alkanediols into γ-lactones. The cells oxidized 1,4-decanediol (1a) and 1,4-nonanediol (2a) into the corresponding γ-lactones 5-hexyl-dihydro-2(3H)-furanone (γ-decalactone, 1c) and 5-pentyl-dihydro-2(3H)-furanone (γ-nonalactone, 2c), respectively, with an EE(R) of 40–75%. The transient formation of the γ-lactols 5-hexyl-tetrahydro-2-furanol (γ-decalactol, 1b) and 5-pentyl-tetrahydro-2-furanol (γ-nonalactol, 2b) as intermediates was observed by GC–MS. 1,4-Pentanediol (3a) was transformed into 5-methyl-dihydro-2(3H)-furanone (γ-valerolactone, 3c) whereas (R)- and (S)-2-methyl-1,4-butanediol (4a) was converted to the methyl-substituted γ-butyrolactones 4-methyl-dihydro-2(3H)-furanone (4c1) and 3-methyl-dihydro-2(3H)-furanone (4c2) in a ratio of 80:20 with a yield of 55%. Also cis-2-buten-1,4-diol (5a) was transformed resulting in the formation of 2(5H)-furanone (γ-crotonolactone, 5c). At the higher pH values of 8.8 the yield of lactone formed was improved; however, the enatiomeric excesses were slightly higher at the lower pH of 5.2.  相似文献   

7.
Ceriopsins A-D,diterpenoids from Ceriops decandra   总被引:3,自引:0,他引:3  
Chemical examination of the ethyl acetate solubles of the CH3OH:CH2Cl2 (1:1) extract of the roots of Ceriops decandra collected from Kauvery estuary resulted in the isolation of four new diterpenoids, ceriopsins A–D (1–4). The structures of the new diterpenoids were elucidated by a study of their physical and spectral data as methyl 17-hydroxy-16-oxobeyeran-18-oate (1), methyl 16(R)-16,17-dihydroxybeyeran-18-oate (2), 1β,15(S)-isopimar-7-ene-1,15,16-triol (3), and 8,15(R)-epoxypimarane-1β,16-diol (4).  相似文献   

8.
Soluble epoxide hydrolase (sEH) was shown to catalyze hydrolysis of epoxides using the ionic liquids (ILs) [bmim][PF6], [bmim][N(Tf)2], and [bmim][BF4] (where bmim=1-butyl-3-methylimidazolium, PF6=hexafluorophosphate, N(Tf)2=bis(trifluoromethylsulfonyl)imide, and BF4=tetrafluoroborate) as reaction medium. Reaction rates were generally comparable with those observed in buffer solution, and when the cress enzyme was used the hydrolysis of trans-β-methylstyrene oxide gave, through a stereoconvergent process, the corresponding optically active (1S,2R)-erythro-1-phenylpropane-1,2-diol.  相似文献   

9.
Any method of cryopreservation of the cornea must maintain integrity of the corneal endothelium, a monolayer of cells on the inner surface of the cornea that controls corneal hydration and keeps the cornea thin and transparent. During freezing, the formation of ice damages the endothelium, and vitrification has been suggested as a means of achieving ice-free cryopreservation of the cornea. To achieve vitrification at practicable cooling rates, tissues must be equilibrated with high concentrations of cryoprotectants. In this study, the effects of propane-1,2-diol on the structure and function of rabbit corneal endothelium were studied. Corneas were exposed to concentrations of propane-1,2-diol ranging from 10 to 30% v/v in a Hepes-buffered Ringer's solution containing glutathione, adenosine, 5 mmol/liter sodium bicarbonate, and 6% w/v bovine serum albumin. Endothelial function was assessed by monitoring corneal thickness during perfusion of the endothelial surface at 34 degrees C for 6 hr. Exposure to 10-15% v/v propane-1,2-diol was well tolerated for 20 min at 4 degrees C when the cryoprotectant was removed in steps or by sucrose dilution. However, exposure to 25% v/v propane-1,2-diol for 20 min at 0 or -5 degrees C was consistently tolerated only when 2.5% w/v chondroitin sulfate was included in the vehicle solution. Exposure to 30% v/v propane-1,2-diol was harmful at -5 and -10 degrees C. The endothelial damage following exposure to 30% v/v propane-1,2-diol was probably the result of a toxic effect rather than osmotic stress. Although 25% v/v propane-1,2-diol does not vitrify at cooling rates that are practicable for corneas, it could at this concentration form a major component of a vitrification solution comprising a mixture of cryoprotectants.  相似文献   

10.
The reaction of (−)-(R)-myrtenal and (+)-(R)-phenylethylamine gave a Schiff base 1 which was reacted with MePBr2 in the presence of a base to give under dehydrohalogenation of an intermediate McCormack product a salt 2. Treatment of 2 with sodium led to the formation of the azaphosphole 4. η3-C3H5NiCl and 4 gave a 1:1 adduct 5 and nickel(0) gave a 1:4 complex 6. Compounds 4–6 were characterized by NMR spectroscopy as well as by single crystal X-ray structure determination.  相似文献   

11.
Chemo-enzymatic approaches for the synthesis of the family of aromatase inhibitory drug via lipase-catalyzed kinetic resolution of (±)-4-cyano-4-phenyl-1-hexanol (2) as appropriate precursors were described. Enzymatic transesterification of primary alcohol (±)-2 using Pseudomonas cepacia (Amano PS, PCL) provided the enantiopure alcohol (R)-(−)-2 with 99% ee at conversion of 86%, while that of (±)-2 using Pseudomonas fluorescens (Amano AK, LAK) provided the (S)-(+)-2 with 96% ee at conversion of 86%. Chemical transformation of substrate (R)-(−)-2 gave (R)-(+)-aminoglutethimide (1) in enantioselectively high yield.  相似文献   

12.
1,3-Butadiene is an important industrial chemical and a common environmental contaminant. Because of its suspected carcinogenicity butadiene-related research has gained high activity. The obvious lack of knowledge so far has been that a biomonitoring method that can detect at least one of the metabolites of butadiene from body fluids or excretas does not exist. In this communication we describe a robust and simple analytical method which can be applied for biomonitoring purposes. We have developed a method that can detect 3-butene-1,2-diol in urine samples of rats inhalation-exposed to various concentrations of 1,3-butadiene. The method is based on liquid–liquid extraction and subsequent gas chromatographic analysis. The extraction efficiency of 3-butene-1,2-diol at a concentration of 2.2 μg/ml was 95% (SD=±3%, n=3) and was achieved by using sodium chloride saturation and isopropanol as an extracting solvent. The standard deviation of the gas chromatographic analysis was ±2% (n=12), the limit of detection was 0.08 μg/ml, the limit of quantitation was 0.11 μg/ml (SD=±4.8%, n=3) and the analysis was observed to be linear from 0.11 to 486 μg/ml (R=0.9987). Animals exposed to 1,3-butadiene showed a linear excretion of 3-butene-1,2-diol into urine as a function of butadiene exposure. During the exposure saturation of metabolism or accumulation of 1,3-butadiene or 3-butene-1,2-diol into the body was not observed in any exposure levels used.  相似文献   

13.
Diacylglycerophosphocholines containing (R)-3-, (R)-12-, (R)-17-hydroxy octadeca(e)noic acids and the corresponding racemates were synthesized and purified to homogeneity. The influence of the position of the hydroxy group on the monolayer packing properties of these fatty acids and their phosphatidylcholines was studied by Langmuir techniques and 1,2-di-[(R)-12-hydroxy-octadec-cis-9-enyl]-sn-glycero-3-phosphocholine displayed the largest lift-off area (330 Å2/molecule). This result was in line with the thermotropic phase behavior of these phospholipids, as measured by differential scanning calorimetry (DSC): the gel- to liquid-crystalline phase transition temperature (Tm) passed through a minimum of −15.1°C for 1,2-di-[(R)-12-hydroxy-octadec-cis-9-enyl]-sn-glycero-3-phosphocholine.  相似文献   

14.
A synthesis of (15:1)-urushiol, urushiol monoene, 3-[(Z)-pentadec-8-enyl] catechol, 1,2-dihydroxy-3-[(Z)-pentadec-8-enyl] benzene, one of the toxic principles of Rhus toxicodendron and of Rhus vernicifera is described. 6-Chlorohexan-1-ol protected at the OH group with ethyl vinyl ether reacted with 2,3-dimethoxybenzaldehyde in the presence of lithium to give, after removal of the protective group with methanolic 4-toluenesulphonic acid, 1-(2,3-dimethoxyphenyl) heptane-1,7-diol. Catalytic hydrogenolysis in ethanol with palladium–carbon selectively afforded 7-(2,3-dimethoxyphenyl)heptane-1-ol accompanied by a small proportion of the 7-(3-methoxyphenyl)heptane-1-diol, formed by demethoxylation. Reaction of the dimethoxy compound with boron tribromide resulted in both bromination and demethylation to give 7-(2,3-dihydroxyphenyl) heptylbromide. This bromide in tetrahydrofuran (THF) containing hexamethylphosphoric triamide reacted with excess lithium oct-1-yne to give 3-(pentadec-8-enyl)catechol which, by catalytic hydrogenation in ethyl acetate containing quinoline, selectively formed the required cis product, 3-[(Z)-pentadec-8-enyl]catechol which was identical chromatographically and spectroscopically with urushiol monoene separated from the natural product.  相似文献   

15.
Substituted phenacyl chlorides are reduced with whole-cell biocatalysts to give (R)- or (S)-chlorohydrines in high yields and to make them good for high enantiomeric excess. Yields and enantiomeric purity of the S-enantiomer could be increased by performing bioreduction in the presence of polymeric absorbing resins. With this methodology, 2-chloro-1(S)-(3,4-dichloro-phenyl)-ethanol of 98% e.e. and 2-(R)-(4-nitro-phenyl)-ethanol of 92% e.e. have been prepared and used respectively as precursors in the synthesis of (+)-cis-1(S),4(S)-sertraline and of the β-blocker (R)-nifenalol®.  相似文献   

16.
Corneal tolerance of vitrifiable concentrations of propane-1,2-diol   总被引:4,自引:0,他引:4  
S J Rich  W J Armitage 《Cryobiology》1991,28(2):159-170
The merit of corneal cryopreservation by vitrification as opposed to conventional freezing is the avoidance of ice damage which is believed to disrupt the integrity of the corneal endothelium resulting in loss of corneal transparency. The cornea must be equilibrated with high concentrations of cryoprotectant in order to achieve vitrification at practicable cooling rates. In an earlier study, corneas were exposed to 3.4 mol/liter propane-1,2-diol (Rich and Armitage (1990) Cryobiology 27, 42-54). The present study exposed rabbit corneas to concentrations of propane-1,2-diol between 3.4 and 5.4 mol/liter in a Hepes-buffered Ringer's solution containing glutathione, adenosine, 5 mmol/liter sodium bicarbonate, 6% (w/v) bovine serum albumin, and 2.5% (w/v) dextran sulfate. Dextran sulfate was as effective as chondroitin sulfate at improving endothelial tolerance of 3.4 mol/liter propane-1,2-diol. This beneficial effect may be linked to the polyanionic nature of these molecules. Corneas exposed to 5.4 mol/liter propane-1,2-diol were cooled in liquid nitrogen vapor at a temperature of -140 degrees C for 2 h. Warming was achieved by direct transfer to a dilution solution at -10 degrees C. Endothelial function was assessed by monitoring corneal thickness during perfusion of the endothelial surface at 34 degrees C for 6 h. Endothelial structure was observed by specular microscopy during the perfusion and by scanning electron microscopy after perfusion. Corneas tolerated exposure to 3.4 mol/liter propane-1,2-diol for 20 min at 0 degrees C and to 4.1 mol/liter for 10 min at -10 degrees C. Exposure to 4.8 and 5.4 mol/liter for 10 min at -10 degrees C caused endothelial damage, although a degree of endothelial function was retained. Function following exposure to 5.4 mol/liter was improved by reducing the temperature of exposure to -15 degrees C. Corneas cooled after exposure to 5.4 mol/liter propane-1,2-diol for 10 min at -15 degrees C apparently vitrified, but devitrified on warming. The corneas swelled to such an extent during perfusion that the endothelium could not be viewed by specular microscopy, subsequent scanning electron microscopy showed a severely disrupted endothelium.  相似文献   

17.
Of nine commercially available lipases, lipase SP 435 from Candida antarctica, showed moderate enantioselectivity (E=17) for acetylation of racemic 3,3,3-trifluoro-2-phenylpropane-1,2-diol, 2, with vinyl acetate in diisopropyl ether (S selectivity). The other eight had low selectivities, with E values below 10. The selectivity and reactivity of SP 435 for 2 was markedly improved in dichloroethane (E=41). Moreover, SP 435 had moderate to high selectivity for the related compounds 3,3,3-trifluoro-2-(1-naphthyl)-propane-1,2-diol, 4, (E=20), 3,3,3-trifluoro-2-(indol-3-yl)propane-1,2-diol, 6, (E=80), and 3,3,3-trifluoro-2-(pyrrol-2-yl)-propane-1,2-diol, 8, (E=17).  相似文献   

18.
The reaction of the bis(triflates) 1,2-bis[2-(trifluoromethylsulfonyloxy)ethyl]benzene (1), 1,2-bis[3-(trifluoromethylsulfonyloxy)propyl]benzene (3) and 1,2-bis{2-[2-(trifluoromethylsulfonyloxy)ethyl]phenyl}ethane (6), respectively, with the carbonyl metalates [M(CO)4]2- (M=Os (a), Ru (b), Fe (c)) results in the formation of the osmaorthocyclophanes 2a, 4a, 7a and 8a, the ruthenacylophane 2b and the ferracyclophanes 2c and 7c, respectively. Carbon monoxide insertion into the Fe-Cσ bonds of the ferracycles 2c and 7c, respectively, affords the ketones 3-oxo[5]orthocyclophane (9) and 3-oxo[5.2]orthocyclophane (11). The structure of 2a was investigated by an X-ray structural analysis. 2a crystallizes in the monoclinic space group P21/n with Z=4.  相似文献   

19.
The new PN ligands 5, 6 and 7 were prepared by Schiff base condensation of 2-formylphenyl(diphenyl)phosphine (1) with the optically active amines (R)-(−)-2-aminobutanol (2), (S)-(+)-2-aminobutanol (3) and (1S,2S)-2-amino- 1-phenyl-1,3-propanediol (4). These new ligands were used in the Pd catalysed allylation of 1,5-dimethylbarbituric acid with allylacetate. 5-Allyl-1,5-dimethylbarbituric acid was obtained with an optical induction of up to 12.7% ee.  相似文献   

20.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号