首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organization of DNA sequences in the mouse genome   总被引:1,自引:1,他引:0  
Analysis of the organization of nucleotide sequences in mouse genome is carried out on total DNA at different fragment size, reannealed to intermediate value of Cot, by Ag+-Cs2SO4 density gradient centrifugation. — According to nuclease S-1 resistance and kinetic renaturation curves mouse genome appears to be made up of non-repetitive DNA (76% of total DNA), middle repetitive DNA (average repetition frequency 2×104 copies, 15% of total DNA), highly repetitive DNA (8% of total DNA) and fold-back DNA (renatured density 1.701 g/ml, 1% of total DNA).— Non-repetitive sequences are intercalated with short middle repetitive sequences. One third of non-repetitive sequences is longer than 4500 nucleotides, another third is long between 1800 and 4500 nucleotides, and the remainder is shorter than 1800 nucleotides. —Middle repetitive sequences are transcribed in vivo. The majority of the transcribed repeated sequences appears to be not linked to the bulk of non-repeated sequences at a DNA size of 1800 nucleotides. — The organization of mouse genome analyzed by Ag+-Cs2SO4 density gradient of reannealed DNA appears to be substantially different than that previously observed in human genome using the same technique.  相似文献   

2.
The frequency classes and organization of the main component (mc) DNA of a crustacean, the land crab, Gecarcinus lateralis, have been characterized. The reassociation kinetics of 380 nucleotide long mcDNA fragments show that approximately 50% contain sequences repeated more than 800 times. Present in few, if any, copies are sequences repeated from 2 to 800 times. The remainder of the DNA reassociates as single copy sequences with a rate constant consistent with the organism's genome size. The reassociation kinetics of highly sheared DNA fragments of every true crab studied (Vaughn, 1975; Christie et al., 1976) are similar to each other and different from those of other invertebrate DNAs (Goldberg et al., 1975). Each of these genomes has a paucity of sequences repeated from 10 to 800 times and an abundance of highly repeated sequences. To determine if sequences repeated more than 800 times are interspersed with single copy sequences, we examined the arrangement of repetitive and non-repetitive sequences in mcDNA. The reassociation and melting properties of partially duplex mcDNA fragments of increasing lengths show that at least 75% of the DNA is organized in an interspersed pattern. In this pattern, single copy sequences with an average length of 800–900 nucleotides are interspersed with repetitive sequences. S1 nuclease digestion of reassociated 3100 nucleotide fragments indicates that 44% of the mcDNA is repetitive and that one-third of the repetitive sequences (average length=285 nucleotides) are interspersed with single copy sequences. We conclude that repetitive sequencies are interspersed with most of the single copy sequences in an interspersion pattern similar to that of Xenopus rahter than to that of another arthropod, Drosophila.Operated by Union Carbide Corporation for the Energy Research and Development Administration  相似文献   

3.
Nuclear DNA of rye (Secale cereale), a plant species with a relatively large genome (i.e., 18 pg diploid), has been characterized by determination of its content in repetitive sequences, buoyant density, and thermal denaturation properties. The reassociation kinetics of rye DNA reveals the presence of 70 to 75% repeated nucleotide sequences which are grouped into highly (Cot 1) and intermediately repetitive (Cot 1–100) fractions. On sedimentation in neutral CsCl gradients, native, high molecular weight DNA forms an almost symmetrical band of density 1.702 g/cm3. The highly repetitive DNA (Cot 1), on the other hand, is separated into two distinct peaks; the minor component has a density of 1.703 g/cm3 corresponding to that of a very rapidly reassociating fraction (Cot 0.01) which comprises 10 to 12% of the rye genome. The latter DNA contains segments which are repeated 6×105 to 6×106 times. The major peak of the Cot 1 fraction shows a density of 1.707 g/cm3 and consists of fragments repeated about 3.7×104 times. The intermediately repetitive DNA is much more heterogeneous than the Cot 1 fraction and has a low degree of repetition of the order of 8.5×102. The melting behavior of the Cot 1 fraction reveals the presence of a high degree of base pairing (i.e., 7% mismatching). When native rye DNA is resolved into fractions differing in GC content by hydroxyapatite thermal column chromatography and these fractions are analyzed for the presence of repetitive sequences, it is observed that the highly redundant DNA (Cot 1) is mostly located in the fraction denaturing between 80° and 90°C. This result suggests that highly repetitive rye DNA occurs in a portion of the genome which is neither very rich in AT nor in GC.  相似文献   

4.
The pattern of DNA sequence organization in the genome of Cycas revoluta was analyzed by DNA/DNA reassociation. Reassociation of 400 base pair (bp) fragments to various C0t values indicates the presence of at least four kinetic classes: the foldback plus very highly repetitive sequences (15%), the fast repeats (24%), the slow repeats (44%), and the single copy (17%). The latter component reassociates with a rate constant 1×10–4 M–1S–1 corresponding to a complexity of 1.6× 106 kb per haploid genome. A haploid C. revoluta nucleus contains approximately 10.3 pg DNA. The single-copy sequences account for about 28% of the DNA, but only 17% reassociate with single-copy kinetics because of interspersion with repetitive sequences. — The interspersion of repetitive and single-copy sequences was examined by reassociation of DNA fragments of varying length to C0t values of 70 and 500. A major (65%) and homogeneous class of single-copy sequences averaging 1,100 bp in length is interspersed in a short period pattern with repeated sequences. A minor (35%) heterogeneous single-copy component is interspersed in a long-period pattern. The majority of repetitive sequences have a length distribution of 100–350 bp with subclasses averaging 150 and 300 bp in length. Repeat sequences with a wide range in sizes exceeding 2 kilobase pair (kb) are also present in this genome. — The size and distribution of inverted repeat (ir) sequences in the DNA of C. revoluta were studied by electron microscopy. It is estimated that there are approximately 4 × 106 ir pairs (one per 2.33 kb) that form almost equal numbers of looped and unlooped palindromes. This high value is 2.5 times that found in wheat DNA. These palindromes are in general randomly distributed in the genome with an average interpalindrome distance of 1.6 kb. The majority (about 85%) of ir sequences of both types of palindromes belong to a main-size class, with an average length of 210 bp in the unlooped and and 163 bp in the looped type. These values are comparable to those reported for some other plant and animal genomes. Distribution of length of single stranded loops showed a main-size class (75%) with an average length of 220 bp.  相似文献   

5.
Summary The organization of repetitive and single copy DNA sequences in sea urchin DNA has been examined with the single strand specific nuclease Sl fromAspergillus. Conditions and levels of enzyme were established so that single strand DNA was effectively digested while reassociated divergent repetitive duplexes remained enzyme resistant. About 25% of sea urchin DNA reassociates with repetitive kinetics to form Sl resistant duplexes of two distinct size classes derived from long and short repetitive sequences in the sea urchin genome. Fragments 2,000 nucleotides long were reassociated to Cot 20 and subjected to controlled digestion with Sl nuclease. About half of the resistant duplexes (13% of the DNA) are short, with a mode size of about 300 nucleotide pairs. This class exhibits significant sequence divergence, and principally consists of repetitive sequences which were interspersed with single copy sequences. About one-third of the long duplexes (4% of the DNA) are reduced in size after extensive Sl nuclease digestion to about 300 nucleotide pairs. About two-thirds of the long resistant duplexes (8% of the DNA) remains long after extensive SI nuclease digestion. These long reassociated duplexes are precisely base paired. The short duplexes are imprecisely paired with a melting temperature about 9°C below that of precisely paired duplexes of the same length. The relationship between length of repetitive duplex and precision of repetition is confirmed by an independent method and has been observed in the DNA of a number of species over a wide phylogenetic area.Also Staff Member, Carnegie Institution of Washington  相似文献   

6.
Reassociation kinetics of DNA from the macronucleus of the ciliate, Tetrahymena pyriformis GL, has been studied. The genome size determined by the kinetic complexity of DNA was found to be 2.0×108 base pairs (or 1.2×1011 daltons). About 90% of the macronuclear DNA fragments 200–300 nucleotides in length reassociate at a rate corresponding to single-copy nucleotide sequences, and 7–9% at a rate corresponding to moderate repetitive sequences; 3–4% of such DNA fragments reassociate at C0t practically equal to zero. To investigate the linear distribution of repetitive sequences, DNA fragments of high molecular weight were reassociated and reassociation products were treated with Sl-nuclease. DNA double-stranded fragments were then fractionated by size. It has been established that in the Tetrahymena genome long regions containing more than 2000 nucleotides make up about half of the DNA repetitive sequences. Another half of the DNA repetitive sequences (short DNA regions about 200–300 nucleotides long) intersperse with single-copy sequences about 1,000 nucleotides long. Thus, no more than 15% of the Tetrahymena genome is patterned on the principle of interspersing single-copy and short repetitive sequences. Most of the so called zero time binding or foldback DNA seem to be represented by inverted self-complementary (palindromic) nucleotide sequences. The conclusion has been drawn from the analysis of this fraction isolated preparatively by chromatography. About 75% of the foldback DNA is resistant to Sl-nuclease treatment. The Sl-nuclease resistance is independent of the original DNA concentration. Heat denaturation and renaturation are reversible and show both hyper and hypochromic effects. The majority of the inverted sequences are unique and about 20% are repeated tens of times. According to the equilibrium distribution in CsCl density gradients the average nucleotide content of the palindromic fraction does not differ significantly from that of total macronuclear DNA. It was shown that the largest part of this fraction of the Tetrahymena genome are not fragments of ribosomal genes.  相似文献   

7.
The genome of parsley was studied by DNA/DNA reassociation to reveal its spectrum of DNA reiteration frequencies and sequence organization. The reassociation of 300 nucleotide DNA fragments indicates the presence of four classes of DNA differing in repetition frequency. These classes are: highly repetitive sequences, fast intermediate repetitive sequences, slow intermediate repetitive sequences, and unique sequences. The repeated classes are reiterated on average 136,000, 3000, and 42 times respectively. A minor part of the genome is made up of palindromes. — The organization of DNA sequences in the P. sativum genome was determined by the reassociation kinetics of DNA fragments of varying length. Further information was derived from S1 nuclease resistance and from hyperchromicity measurements on DNA fragments reassociated to defined C0t values. — The portion of the genome organized in a short period interspersion pattern amounts to 47%, with the unique sequences on an average 1000 nucleotides long, and most of the repetitive sequences about 300 nucleotides in length, whereas the weight average length may be up to 600 nucleotides. — About 5% unique DNA and 11% slow intermediate repetitive DNA consist of sequences from 103 up to 104 nucleotides long; these are interspersed with repetitive sequences of unknown length. Long repetitive sequences constitute 33% of the genome, 13% are satellite-like organized, and 20% in long stretches of intermediate repetitive DNA in which highly divergent sequences alternate with sequences that show only minimal divergence. — The results presented indicate remarkable similarities with the genomes of most animal species on which information is available. The most intriguing pecularity of the plant genome derives from its high content of repetitive DNA and the presumed organization of the latter.  相似文献   

8.
DNA sequence organization patterns have been studied in fourCucurbitaceae plant species, namely,Luffa cylindrica (sponge gourd),L. acutangula (ridge gourd),Benincasa hispida (ash gourd) andCoccinia indica (ivy gourd). Extensive interspersion of repeat and single copy sequences has been observed in sponge gourd and ridge gourd. In ash gourd and ivy gourd, however, there is a limited interspersion of these sequences and a large portion of the single copy DNA remains uninterspersed. The interspersed repetitive sequences are composed of a major class (75–80%) of short repeats (300 base pairs long) and a minor class (15–20%) of long repeats (2 000–4 000 base pairs) in all the four species. The average length of single copy sequences dispersed among repeats is 1 800–2 900 base pairs. In spite of these gross similarities in the genome organization in the four species, the fraction of repeats and single copy sequences involved in short and long period interspersion patterns, and fraction of single copy sequences remaining uninterrupted by repeats are vastly different. The probable implications of these differences with respect to speciation events and rates of genome evolution are discussed.Molecular Analysis ofCucurbitaceae Genomes, III. — NCL Communication No.: 3595.  相似文献   

9.
DNA sequence organization in the genome of Nicotiana tabacum   总被引:2,自引:2,他引:0  
The genome of Nicotiana tabacum was investigated by DNA/DNA reassociation for its spectrum of DNA repetition components and pattern of DNA sequence organization. The reassociation of 300 nucleotide DNA fragments analyzed by hydroxyapatite chromatography reveals the presence of three major classes of DNA differing in reiteration frequency. Each class of DNA was isolated and characterized with respect to kinetic homogeneity and thermal properties on melting. These measurements demonstrate that the genome of N. tabacum has a 1C DNA content of 1.65 pg and that DNA sequences are represented an average of 12,400, 252, and 1 times each. — The organization of the DNA sequences in the N. tabacum genome was determined from the reassociation kinetics of long DNA fragments as well as S1 nuclease resistance and hyperchromicity measurements on DNA fragments after annealing to C0t values at which only repetitive DNA sequences will reassociate. At least 55% of the total DNA sequences are organized in a short period interspersion pattern consisting of an alternation of single copy sequences, averaging 1400 nucleotides, with short repetitive elements approximately 300 nucleotides in length. Another 25% of the genome contains long repetitive DNA sequences having a minimal genomic length of 1500 nucleotides. These repetitive DNA sequences are much less divergent than the short interspersed DNA sequence elements. These results indicate that the pattern of DNA sequence organization in the tobacco genome bears remarkable similarity to that found in the genomes of most animal species investigated to date.  相似文献   

10.
Structural genes adjacent to interspersed repetitive DNA sequences   总被引:2,自引:0,他引:2  
The observation that repetitive and single copy sequences are interspersed in animal DNAs has suggested that repetitive sequences are adjacent to single copy structural gene sequences. To test this concept, single copy DNA sequences contiguous to interspersed repetitive sequences were prepared from sea urchin DNA by hydroxyapatite fractionation (repeat-contiguous DNA fraction). These single copy sequences included about one third of the total nonrepetitive sequence in the genome as determined by the amounts recovered during the hydroxyapatite fractionation and by reassociation kinetics. 3H-labeled mRNA from sea urchin gastrula was prepared by puromycin release from polysomes and used in DNA-driven hybridization reactions. The kinetics of mRNA hybridization reactions with excess whole DNA were carefully measured, and the rate of hybridization was found to be 3–5 times slower than the corresponding single copy DNA driver reassociation rate. The mRNA hybridized with excess repeat-contiguous DNA with similar kinetics relative to the driver DNA. At completion 80% of that mRNA hybridizable with whole DNA (approximately 65%) had reacted with the repeat-contiguous DNA fraction (50%). This result shows that 80–100% of the mRNA molecules present in sea urchin embryos are transcribed from single copy DNA sequences adjacent to interspersed repetitive sequences in the genome.  相似文献   

11.
12.
Complex alterations in the redundancy and methylation of repeated DNA sequences were shown to differentiate the nuclear genome of individuals belonging to single progenies of homozygous plants of the sunflower. DNA was extracted from seedlings obtained from seeds collected at the periphery of flowering heads (P DNA) or from seedlings obtained from seeds collected in their middle (M DNA). Three fractions of repeated sequences were isolated from genomic DNA: a highly repetitive fraction (HR), which reassociates within an equivalent Cot of about 2 × 10-1, and two medium repetitive fractions (MR1 and MR2) having Cot ranges of about 2 × 10-1-2 and 2-102, respectively. Denaturation kinetics allowed different sequence families to be recognized within each fraction of repetitive DNA, and showed significant differences in sequence redundancy to occur between P and M DNA, particularly as far as the MR2 fraction is concerned. Most DNA sequence families are more represented in P DNA than in M DNA. However, the redundancy of certain sequences is greater in the latter than in the former. Each repetitive DNA fraction was hybridized to Southern blots of genomic P or M DNA which was digested to completion by three pairs of isoschizomeric restriction endonucleases which are either insensitive or sensitive to the methylation of a cytosine in the recognition site. The results obtained showed that the repetitive DNA of H. annuus is highly methylated. Clear-cut differences in the degree of methylation of P and M DNA were found, and these differences were particularly apparent in the MR2 fraction. It is suggested that alterations in the redundancy of given DNA sequences and changes in their methylation patterns are complementary ways to produce continuous genotypic variability within the species which can be exploited in environmental adaptation.Research supported by National Research Council of Italy, Special Project RAISA, Sub-project No. 2  相似文献   

13.
We have examined the organization of the repeated and single copy DNA sequences in the genomes of two insects, the honeybee (Apis mellifera) and the housefly (Musca domestica). Analysis of the reassociation kinetics of honeybee DNA fragments 330 and 2,200 nucleotides long shows that approximately 90% of both size fragments is composed entirely of non-repeated sequences. Thus honeybee DNA contains few or no repeated sequences interspersed with nonrepeated sequences at a distance of less than a few thousand nucleotides. On the other hand, the reassociation kinetics of housefly DNA fragments 250 and 2,000 nucleotides long indicates that less than 15% of the longer fragments are composed entirely of single copy sequences. A large fraction of the housefly DNA therefore contains repeated sequences spaced less than a few thousand nucleotides apart. Reassociated repetitive DNA from the housefly was treated with S1 nuclease and sized on agarose A-50. The S1 resistant sequences have a bimodal distribution of lengths. Thirty-three percent is greater than 1,500 nucleotide pairs, and 67% has an average size about 300 nucleotide pairs. The genome of the housefly appears to have at least 70% of its DNA arranged as short repeats interspersed with single copy sequences in a pattern qualitatively similar to that of most eukaryotic genomes.  相似文献   

14.
Repetitive rat DNA reassociated to Cot=0.1 and deprived of "foldback" sequences showed close interspersion with unique sequences. As measured by electron microscopy, the average length of repetitive segments was about 600 +/- 400, and of unique segments 1800-3600 base pairs. Pyrimidine tracts over 80 nucleotides in length were found mainly in foldback and repetitive fractions. Oligo(dT) tracts, 20-30 bases in length prevailed in the DNA fraction reassociated to Cot=0.1. Repetitive and unique DNA fractions were annealed to Millipore filters and hybridized with hnRNA. Up to 1.6% of repetitive DNA reassociated to Cot=0.05 showed base complementarity with hnRNA, whereas the comparative figures for DNA reassociated to Cot=10 and for the unique fraction were 0.8% and 0.3% respectively. When hybridization of hnRNA was carried out in solution in vast DNA excess, no hybrid formation with repetitive sequences reassociated to Cot=0.1 was observed, although hybridization with DNA reassociated to Cot=10 was noticeable.  相似文献   

15.
Kinetic of reassociation of short DNA fragments were measured in eight ground squirrel species: Citellus undulatus, C. parryi, C. relictus, C. dauricus, C. citellus, C. pygmaeus, C. fulvus and C. major. It was shown that 30–50% of their genome were represented by repeated sequences forming three kinetic fractions, i.e., very fast (Cot<10-3), fast (Cot 10-3–3×10-1) and intermediate (Cot 6×10-1–6×101). Based on parameters of DNA reassociation kinetics genome sizes of Citellus were estimated to range from 2.7 pg (C. dauricus) to 3.9 pg (C. pygmaeus and C. fulvus). Variation in genome sizes involves both the repeated and the non-repeated sequence components to approximately equal extents in all the species except C. dauricus. The linear quantitative relation between C-banding heterochromatin and both very fast and fast reassociated DNA fractions was established, but no connection with the intermediate fraction was found. No distinet relation was revealed between parameters of DNA reassociation kinetics and taxonomic status of species within genus or with the chromosome number of the karyotype.  相似文献   

16.
Summary Poly(A) RNA from S phase, G2 phase and starved macroplasmodia of Physarum contain mRNA sequences which when translated in vitro, yield similar patterns of polypeptides after fluorography.Reassociation of nick-translated DNA (Cot) allows the isolation of highly labeled single copy DNA which, after saturation hybridization with poly(A) RNA, gives values of 23% for growth and 17% for starvation.Homologous cDNA/poly(A) RNA hybridization reactions (Rot) indicate that 22–28% of the genome is transcribed during growth and 12% during starvation and that about half of the cDNA reacts with 0.1% of the genome and could represent 50–80 RNA species, each present in about 1,000 copies per nucleus. Up to 25,000 different RNA species, 1–5 copies each per nucleus, are estimated to be present during growth, and about 15,000 during starvation. Heterologous cDNA/poly(A) RNA hybridization reactions (Rot) indicate that the RNA sequences in S and G2 phase of the cell cycle are similar, with RNA sequences being more abundant in G2 phase.During starvation about 25% of the sequences present during growth cannot be detected and those sequences present during growth have become diluted during starvation.  相似文献   

17.
Summary A major portion of the genomes of three millet species, namely, barn yard millet, fox tail millet and little millet has been shown to consist of interspersed repeat and single copy DNA sequences. The interspersed repetitive DNA sequences are both short (0.15–1.0 kilo base pairs, 62–64% and long (>1.5 kilo base pairs, 36–38%) in barn yard millet and little millet while in fox tail millet, only long interspersed repeats (>1.5 kilo base pairs) are present. The length of the interspersed single copy DNA sequences varies in the range of 1.6–2.6 kilo base pairs in all the three species. The repetitive duplexes isolated after renaturation of 1.5 kilo base pairs and 20 kilo base pairs long DNA fragments exhibit a high thermal stability with Tms either equal to or greater than the corresponding native DNAs. The S1 nuclease resistant repetitive DNA duplexes also are thermally stable and reveal the presence of only 1–2% sequence divergence.The present data on the modes of sequence arrangement in millets substantiates the proposed trend in plants, namely, plants with 1C nuclear DNA content of less than 5 picograms have diverse patterns of sequence organization while those with 1C nuclear DNA content greater than 5 picograms have predominantly a short period interspersion pattern.Abbreviations kbp kilobase pairs NCL Communication No. 3606.  相似文献   

18.
DNA sequence organization in the mollusc Aplysia californica.   总被引:7,自引:0,他引:7  
The sequence organization of the DNA of the mollusc Aplysia californica has been examined by a combination of techniques. Close-spaced interspersion of repetitive and single copy sequences occurs throughout the majority of the genome. Detailed examination of the DNA of this protostome reveals great similarities to the pattern observed in the two deuterostome organisms previously examined in detail in this laboratory, Xenopus laevis and Strongylocentrotus purpuratus. Labeled and unlabeled Aplysia DNA were prepared from developing embryos and sheared to a fragment length of 400 nucleotides. The kinetics of reassociation were studied by means of hydroxyapatite chromatography, single-strand-specific S1 nuclease, and optical methods of assay. Aplysia DNA of this fragment length contains at least five resolvable kinetic fractions. One classification of these fractions, listed with their reassociation rate constants (l M-1 sec-1) is: single copy (0.00057), slow (0.047), fast (2.58), very fast (4000), and foldback (greater than 10(5)). Sequence arrangement was deduced from: the kinetics of reassociation of DNA fragments of length 400 or 2000 nucleotides; the hyperchromicity of reassociated fragments containing duplex regions; the size of duplex regions resistant to S1 nuclease; and the reassociation of labeled fragments of various lengths with short driver fragments. More than 80% of the single copy DNA sequences are interspersed with repetitive sequences. The maximum spacing of the repeats is about 2000 nucleotides, and the average less than 1000. The very fast fraction does not show interspersion with single copy sequences or with other kinetic fractions. The foldback fraction sequences are fairly widely interspersed. The slow fraction sequences are interspersed with the fast fraction, and possibly also with the single copy DNA. The fast fraction is the dominant interspersed repetitive fraction. Its sequences are adjacent to the great majority of the single copy sequences and have an average length of about 300 nucleotides.  相似文献   

19.
The pattern of sequence organization in the regions of the pea genome near sequences coding for mRNA differs significantly from that in total DNA. Interspersion of repeated and single copy sequences is so extensive that 85% of 1300 nucleotide-long fragments contain highly repetitive sequences (about 5000 copies per haploid genome). However, data presented here demonstrate that sequences which code for mRNA are enriched in the small fraction of fragments which do not contain these highly repetitive sequences. Thus, in contrast to the great majority of other sequences in the genome, most mRNA coding sequences are not located within 1300 nucleotides of highly repetitive elements. Moreover, our data indicate that those repeats (if any) which are closely associated with mRNA coding sequences belong to low copy number families characterized by an unusually low degree of sequence divergence.Abbreviations NT nucleotides - NTP nucleotide pairs - Cot the product of molar concentration of DNA nucleotides and time of incubation (mol s/L) - Tm the temperature at which half of the nucleotides are unpaired - Tm,i the temperature at which half of the complementary strands are completely separated - PIPES 1, 4, Piperazinediethane sulfonic acid - PB an equimolar mixture of NaH2PO4 and Na2HPO4 (pH 6.8).  相似文献   

20.
Summary The karyotypes of females and males ofSphaerocarpos donnellii differ in that there is a large essentially heterochromatic X chromosome in the female (approx. 25 volume-% of the autosomes) and a small Y chromosome in the male (0.1–3 volume-% of the autosomes). DNA from females and males differ in buoyant densities in cesium chloride equilibrium gradients (1.7025 and 1.7035g cm-3, respectively) and in melting points (87.5 and 88.5°C in SSC). The differences are statistically significant. Base analyses revealed 2.5 Mol-% of the rare base 5-methyl cytosine. Upon reassociationSphaerocarpos DNA behaves kinetically in a heterogeneous manner. About 22% of the DNA is repetitive with an average kinetic complexity of 1.6×108 daltons. The kinetic complexity of the slow reassociating DNA fraction, considered to be of the single copy type, is 3.2×1010 daltons. No difference in the renaturation behavior between DNA of males and females could be detected with the techniques used. Our data thus indicate that X chromosomal DNA cannot contain large amounts of highly repeated nucleotide sequences and that it is slightly enriched in AT content compared to the autosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号