首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
F M Rosa 《Cell》1989,57(6):965-974
In frogs, mesoderm presumably derives from presumptive ectoderm by induction under the control of diffusible substances produced by the endoderm. To analyze the early phase of mesoderm induction, I have isolated cDNA copies of mRNAs induced in presumptive ectoderm by mesoderm inducing factor secreted by the XTC cell line. One of the inducible mRNAs encodes a homeodomain-containing protein that is likely to play a regulatory role in development. Mix.1 behaves as an immediate early response to induction, and its kinetics of expression suggest a major role for MBT in the control of inducible gene expression. Unexpectedly, Mix.1 is expressed mostly in the future endoderm, suggesting that endoderm may be formed by induction in a similar way as mesoderm.  相似文献   

3.
At the border of the neural plate, the induction of the neural crest can be achieved by interactions with the epidermis, or with the underlying mesoderm. Wnt signals are required for the inducing activity of the epidermis in chick and amphibian embryos. Here, we analyze the molecular mechanisms of neural crest induction by the mesoderm in Xenopus embryos. Using a recombination assay, we show that prospective paraxial mesoderm induces a panel of neural crest markers (Slug, FoxD3, Zic5 and Sox9), whereas the future axial mesoderm only induces a subset of these genes. This induction is blocked by a dominant negative (dn) form of FGFR1. However, neither dnFGFR4a nor inhibition of Wnt signaling prevents neural crest induction in this system. Among the FGFs, FGF8 is strongly expressed by the paraxial mesoderm. FGF8 is sufficient to induce the neural crest markers FoxD3, Sox9 and Zic5 transiently in the animal cap assay. In vivo, FGF8 injections also expand the Slug expression domain. This suggests that FGF8 can initiate neural crest formation and cooperates with other DLMZ-derived factors to maintain and complete neural crest induction. In contrast to Wnts, eFGF or bFGF, FGF8 elicits neural crest induction in the absence of mesoderm induction and without a requirement for BMP antagonists. In vivo, it is difficult to dissociate the roles of FGF and WNT factors in mesoderm induction and neural patterning. We show that, in most cases, effects on neural crest formation were parallel to altered mesoderm or neural development. However, neural and neural crest patterning can be dissociated experimentally using different dominant-negative manipulations: while Nfz8 blocks both posterior neural plate formation and neural crest formation, dnFGFR4a blocks neural patterning without blocking neural crest formation. These results suggest that different signal transduction mechanisms may be used in neural crest induction, and anteroposterior neural patterning.  相似文献   

4.
5.
Induction is a process in which the developmental pathway of one cell is controlled by signals emitted from another. Mesoderm induction is the first inductive interaction in theXenopus enbryo and probably occurs in all vertebrates. It is a very important event as it is implicated in the regulation of morphogenesis. Nieuwkoop first demonstrated the importance of vegetal endoderm in inducing the mesoderm. Slack and co-workers incorporated the information obtained from experimental embryology in a “three signal” model for mesoderm induction in amphibians (signals arising from ventral vegetal hemisphere, dorsal vegetal hemisphere and the organizer). More recent research has resulted in the detection of mesoderm inducing factors which are members of FGF and TGF--β families. Activin, a member of the TGF-β family, has been shown to induce differential gene expression and cell differentiation in a concentration-dependent manner giving credence to the theory of morphogen gradients. Study of mesoderm induction in the chick embryo is much more difficult due to several reasons. Novel experimental approaches, however, have been used which point to the role of activin and FGF in chick mesoderm induction. The demonstration of mesoderm inducing activity of activin and FGF in other groups of vertebrates, particularly the chick embryo brings out the possibility of a universal mechanism of mesoderm induction being operative in all the vertebrates.  相似文献   

6.
In Pleurodeles , cell-matrix interactions play a major role in promoting active mesodermal cell migration during gastrulation. It was therefore important to determine whether the expression of define matrix molecules may be dependent on mesoderm induction. Results from induction experiments done with XTC cell line-conditioned medium show that mesoderm tissues induced in animal cap explants of Pleurodeles are identical to those from Xenopus . However, we also show that dorsally-induced explants in Pleurodeles elongate to a lesser degree than in Xenopus . This observation agrees well with the differences observed in the role of ECM in Pleurodeles and Xenopus gastrulation, respectively. Additional immunostaining studies demonstrate that the induction of mesodermal tissues is associated with the expression of chondroitin sulfate whereas fibronectin fibrils are already assembled in uninduced animal caps. These results suggest that mesoderm cell-matrix interactions in early amphibian embryo may be under the control of mesoderm induction.  相似文献   

7.
We report the isolation and characterization of a new inhibitory Smad inXenopus,which we have designated asXenopusSmad7. Smad7 is present at fairly constant levels throughout early development and at blastula stages enriched in the ventral side of the animal hemisphere. The induction of mesoderm by TGF-β-like signals is mediated by receptor ALK-4 and we show that Smad7 blocks signaling of ALK-4 in a graded fashion: lower levels of Smad7 block activation of dorsal mesoderm genes and higher levels block all mesoderm genes expression. Smad7 is able to directly activate neural markers in explants in the absence of mesoderm or endoderm. This neural-inducing activity of Smad7 may be due to inhibition of BMP-4 signaling because Smad7 can also block BMP-4-mediated mesoderm induction. Thus, Smad7 acts as a potent inhibitor of mesoderm formation and also activates the default neural induction pathway.  相似文献   

8.
9.
10.
Endodermal Nodal-related signals and mesoderm induction in Xenopus   总被引:7,自引:0,他引:7  
In Xenopus, mesoderm induction by endoderm at the blastula stage is well documented, but the molecular nature of the endogenous inductive signals remains unknown. The carboxy-terminal fragment of Cerberus, designated Cer-S, provides a specific secreted antagonist of mesoderm-inducing Xenopus Nodal-Related (Xnr) factors. Cer-S does not inhibit signalling by other mesoderm inducers such as Activin, Derrière, Vg1 and BMP4, nor by the neural inducer Xnr3. In the present study we show that Cer-S blocks the induction of both dorsal and ventral mesoderm in animal-vegetal Nieuwkoop-type recombinants. During blastula stages Xnr1, Xnr2 and Xnr4 are expressed in a dorsal to ventral gradient in endodermal cells. Dose-response experiments using cer-S mRNA injections support the existence of an endogenous activity gradient of Xnrs. Xnr expression at blastula can be activated by the vegetal determinants VegT and Vg1 acting in synergy with dorsal (beta)-catenin. The data support a modified model for mesoderm induction in Xenopus, in which mesoderm induction is mediated by a gradient of multiple Nodal-related signals released by endoderm at the blastula stage.  相似文献   

11.
Mesoderm of early vertebrate embryos gradually acquires dorsal–ventral polarity during embryogenesis. This specification of mesoderm is thought to be regulated by several polypeptide growth factors. Bone morphogenetic protein (BMP), a member of the TGF-β family, is one of the regulators suggested to be involved in the formation of ventral mesoderm. In this paper, the nature of the endogenous BMP signal in dorsal–ventral specification was assessed in early Xenopus embryos using a dominant negative mutant of the Xenopus BMP receptor. In ectodermal explant assays, disruption of endogenous BMP signaling by the mutant receptor changed the competence of the explant cells to mesoderm-inducing factors, activin and basic fibroblast growth factor (bFGF), and led to formation of neural tissue without mesoderm induction. This result suggests that endogenous BMP acts as a ventral mesoderm modifier rather than a ventral mesoderm inducer, and that interactions between endogenous BMP and mesoderm-inducing factors may be important in dorsal–ventral patterning of embryonic mesoderm. In addition, the induction of neural tissue by inhibition of the BMP signaling pathway also suggests involvement of BMP in neural induction.  相似文献   

12.
We have examined the possible role of two signal transducing mechanisms, tyrosine phosphorylation and activation of protein kinase C (PKC), during fibroblast growth factor (FGF)-induced mesoderm induction in Xenopus. Tyrosine phosphorylation was examined through the use of a monoclonal anti-phosphotyrosine antibody. This antibody was shown to recognize the FGF receptor crosslinked to radioiodinated FGF. We also studied the response of Xenopus ectodermal explants to sodium orthovanadate, a compound that has been shown to elevate intracellular phosphotyrosine levels. Thirty percent of explants cultured in 100 microM vanadate were induced. In addition, vanadate synergized with FGF to give inductions that were more dorsal in nature than either vanadate or FGF alone. The role of PKC was evaluated by measuring PKC activity during mesoderm induction by FGF and by examining the effect of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) on explants. TPA did not induce mesoderm, however, activation of PKC was detected in FGF-treated explants. Therefore, activation of the PKC pathway alone is not sufficient for mesoderm induction. Simultaneous treatment with TPA and FGF resulted in a significant inhibition of mesoderm induction by FGF, suggesting that activation of PKC could be part of a negative feedback mechanism. In contrast, TPA had no effect on induction by activin A.  相似文献   

13.
Members of the fibroblast growth factor (FGF) family induce mesoderm formation in explants of Xenopus embryonic ectoderm (animal caps). Recent studies have been directed at determining signaling pathways downstream of the FGF receptor that are important in mesoderm induction. We have recently shown that a point mutation in the FGF receptor changing tyrosine 766 to phenylalanine (Y/F mutation) abolishes phospholipase C-gamma (PLC-gamma) activation in mammalian cells. To explore the role of PLC-gamma activation in FGF-stimulated mesoderm induction, we constructed two chimeric receptors, each consisting of the extracellular portion of the platelet-derived growth factor beta receptor, with one having the transmembrane and intracellular portions of the wild-type FGF receptor 1 (PR-FR wt) and the other having the corresponding region of the Y/F766 mutant FGF receptor 1 (PR-FR Y/F766). When expressed in Xenopus oocytes, only PR-FR wt was able to mediate PLC gamma phosphorylation, inositol-1,4,5-trisphosphate accumulation, and calcium efflux in response to platelet-derived growth factor stimulation. However, both receptors mediated mesoderm induction in Xenopus animal caps as measured by cap elongation, muscle-specific actin mRNA induction, and skeletal muscle formation. These results demonstrate that PLC gamma activation by the FGF receptor is not required for FGF-stimulated mesoderm induction.  相似文献   

14.
15.
In Xenopus, growth factors of the TGF-beta, FGF and Wnt oncogene families have been proposed to play a role in generating embryonic pattern. In this paper we examine potential interactions between the bFGF and Xwnt-8 signaling pathways in the induction and dorsal-ventral patterning of mesoderm. Injection of Xwnt-8 mRNA into 2-cell Xenopus embryos does not induce mesoderm formation in animal cap ectoderm isolated from these embryos at the blastula stage, but alters the response of this tissue to mesoderm induction by bFGF. While animal cap explants isolated from non-injected embryos differentiate to form ventral types of mesoderm and muscle in response to bFGF, explants from Xwnt-8 injected embryos form dorsal mesodermal and neural tissues in response to the same concentration of bFGF, even if the ectoderm is isolated from the prospective ventral sides of embryos or from UV-ventralized animals. Our results support a model whereby dorso-ventral mesodermal patterning can be attained by a single mesoderm inducing agent, possibly bFGF, which is uniformly distributed across the prospective dorsal-ventral axis, and which acts in concert with a dorsally localized signal, possibly a Wnt protein, which either alters the response of ectoderm to induction or modifies the character of mesoderm after its induction.  相似文献   

16.
Regional specification within the mesoderm of early embryos of Xenopus laevis   总被引:22,自引:0,他引:22  
We have further analysed the roles of mesoderm induction and dorsalization in the formation of a regionally specified mesoderm in early embryos of Xenopus laevis. First, we have examined the regional specificity of mesoderm induction by isolating single blastomeres from the vegetalmost tier of the 32-cell embryo and combining each with a lineage-labelled (FDA) animal blastomere tier. Whereas dorsovegetal (D1) blastomeres induce 'dorsal-type' mesoderm (notochord and muscle), laterovegetal and ventrovegetal blastomeres (D2-4) induce either 'intermediate-type' (muscle, mesothelium, mesenchyme and blood) or 'ventral-type' (mesothelium, mesenchyme and blood) mesoderm. No significant difference in inductive specificity between blastomeres D2, 3 and 4 could be detected. We also show that laterovegetal and ventrovegetal blastomeres from early cleavage stages can have a dorsal inductive potency partially activated by operative procedures, resulting in the induction of intermediate-type mesoderm. Second, we have determined the state of specification of ventral blastomeres by isolating and culturing them in vitro between the 4-cell stage and the early gastrula stage. The majority of isolates from the ventral half of the embryo gave extreme ventral types of differentiation at all stages tested. Although a minority of cases formed intermediate-type and dorsal-type mesoderms we believe these to result from either errors in our assessment of the prospective DV axis or from an enhancement, provoked by microsurgery, of some dorsal inductive specificity. The results of induction and isolation experiments suggest that only two states of specification exist in the mesoderm of the pregastrula embryo, a dorsal type and a ventral type. Finally we have made a comprehensive series of combinations between different regions of the marginal zone using FDA to distinguish the components. We show that, in combination with dorsal-type mesoderm, ventral-type mesoderm becomes dorsalized to the level of intermediate-type mesoderm. Dorsal-type mesoderm is not ventralized in these combinations. Dorsalizing activity is confined to a restricted sector of the dorsal marginal zone, it is wider than the prospective notochord and seems to be graded from a high point at the dorsal midline. The results of these experiments strengthen the case for the three-signal model proposed previously, i.e. dorsal and ventral mesoderm inductions followed by dorsalization, as the simplest explanation capable of accounting for regional specification within the mesoderm of early Xenopus embryos.  相似文献   

17.
The first inductive event in Xenopus development establishes the mesoderm at the equator of the developing embryo. As part of this process, the dorsal-ventral and anterior-posterior axes of the embryo are initially established. A number of signalling molecules which may play a role in mesodermal induction and patterning have been identified in the last several years, including members of the FGF, TGF-beta and Wnt gene families. A variety of experiments, using either purified factors or injection of RNA encoding these factors, have added to the wealth of classical embryological experimental data collected over the last century. We have synthesized some recent results with the classical data to provide a framework for examining the process of mesoderm induction, and to formulate putative roles for some of the different factors. We incorporate these ideas into a working model of mesoderm induction that provides a basis for future experimental directions. Finally, we suggest that mesoderm induction may not be a discrete set of well separated events, but instead may be a process involving partially overlapping signals that produce the same pattern.  相似文献   

18.
Xenopus in vitro studies have implicated both transforming growth factor beta (TGF-beta) and fibroblast growth factor (FGF) families in mesoderm induction. Although members of both families are present during mouse mesoderm formation, there is little evidence for their functional role in mesoderm induction. We show that mouse embryonic stem cells, which resemble primitive ectoderm, can differentiate to mesoderm in vitro in a chemically defined medium (CDM) in the absence of fetal bovine serum. In CDM, this differentiation is responsive to TGF-beta family members in a concentration-dependent manner, with activin A mediating the formation of dorsoanterior-like mesoderm and bone morphogenetic protein 4 mediating the formation of ventral mesoderm, including hematopoietic precursors. These effects are not observed in CDM alone or when TGF-beta 1, -beta 2, or -beta 3, acid FGF, or basic FGF is added individually to CDM. In vivo, at day 6.5 of mouse development, activin beta A RNA is detectable in the decidua and bone morphogenetic protein 4 RNA is detectable in the egg cylinder. Together, our data strongly implicate the TGF-beta family in mammalian mesoderm development and hematopoietic cell formation.  相似文献   

19.
The embryonic stem cell differentiation system was used to define the roles of the Activin/Nodal, BMP, and canonical Wnt signaling pathways at three distinct developmental stages during hematopoietic ontogeny: induction of a primitive streak-like population, formation of Flk1(+) mesoderm, and induction of hematopoietic progenitors. Activin/Nodal and Wnt, but not BMP, signaling are required for the induction of the primitive streak. Although BMP is not required for primitive streak induction, it displays a strong posteriorizing effect on this population. All three signaling pathways regulate induction of Flk1(+) mesoderm. The specification of Flk1(+) mesoderm to the hematopoietic lineages requires VEGF and Wnt, but not BMP or Activin/Nodal signaling. Specifically, Wnt signaling is essential for commitment of the primitive erythroid, but not the definitive lineages. These findings highlight dynamic changes in signaling requirements during blood cell development and identify a role for Wnt signaling in the establishment of the primitive erythroid lineage.  相似文献   

20.
Y Gotoh  N Masuyama  A Suzuki  N Ueno    E Nishida 《The EMBO journal》1995,14(11):2491-2498
Mitogen-activated protein kinase (MAPK) is activated by MAPK kinase (MAPKK) in a variety of signaling pathways. This kinase cascade has been shown to function in cell proliferation and differentiation, but its role in early vertebrate development remains to be investigated. During early vertebrate embryogenesis, the induction and patterning of mesoderm are thought to be determined by signals from intercellular factors such as members of the fibroblast growth factor (FGF) family and members of the transforming growth factor-beta family. Here we show that the microinjection of either mRNA encoding a constitutively active mutant of MAPKK or mRNA encoding a constitutively active form of STE11, a MAPKK kinase, leads to the induction of mesoderm in ectodermal explants from Xenopus embryos. Moreover, the expression of MAPK phosphatase-1 (MKP-1, also called CL100) blocks the growth factor-stimulated mesoderm induction. Furthermore, injection of CL100 mRNA into two-cell stage embryos causes severe defects in gastrulation and posterior development. The effects induced by CL100 can be rescued by co-injection of wild-type MAPK mRNA. Thus, the MAPK cascade may play a crucial role in early vertebrate embryogenesis, especially during mesoderm induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号