首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pax-6, a murine paired box gene, is expressed in the developing CNS.   总被引:65,自引:0,他引:65  
A multigene family of paired-box-containing genes (Pax genes) has been identified in the mouse. In this report, we describe the expression pattern of Pax-6 during embryogenesis and the isolation of cDNA clones spanning the entire coding region. The Pax-6 protein consists of 422 amino acids as deduced from the longest open reading frame and contains, in addition to the paired domain, a paired-type homeodomain. Beginning with day 8 of gestation, Pax-6 is expressed in discrete regions of the forebrain and the hindbrain. In the neural tube, expression is mainly confined to mitotic active cells in the ventral ventricular zone along the entire anteroposterior axis starting at day 8.5 of development. Pax-6 is also expressed in the developing eye, the pituitary and the nasal epithelium.  相似文献   

2.
Regionalization of a simple neural tube is a fundamental event during the development of central nervous system. To analyze in vivo the molecular mechanisms underlying the development of mesencephalon, we ectopically expressed Engrailed, which is expressed in developing mesencephalon, in the brain of chick embryos by in ovo electroporation. Misexpression of Engrailed caused a rostral shift of the di-mesencephalic boundary, and caused transformation of dorsal diencephalon into tectum, a derivative of dorsal mesencephalon. Ectopic Engrailed rapidly repressed Pax-6, a marker for diencephalon, which preceded the induction of mesencephalon-related genes such as Pax-2, Pax-5, Fgf8, Wnt-1 and EphrinA2. In contrast, a mutant Engrailed, En-2(F51rE), bearing mutation in EH1 domain, which has been shown to interact with a co-repressor, Groucho, did not show the phenotype induced by wild-type Engrailed. Furthermore, VP16-Engrailed chimeric protein, the dominant positive form of Engrailed, caused caudal shift of di-mesencephalic boundary and ectopic Pax-6 expression in mesencephalon. These data suggest that (1) Engrailed defines the position of dorsal di-mesencephalic boundary by directly repressing diencephalic fate, and (2) Engrailed positively regulates the expression of mesencephalon-related genes by repressing the expression of their negative regulator(s).  相似文献   

3.
The mes-metencephalic boundary (isthmus) has been suggested to act as an organizer in the development of the optic tectum. Pax-5 was cloned as a candidate for regulator of the organizing center. Isthmus-specific expression of Pax-5 and analogy with the genetic cascade in Drosophila suggest that Pax-5 may be at a higher hierarchical position in the gene regulation cascade of tectum development. To examine this possibility, a gain-of-function experiment on Pax-5 was carried out. In ovo electroporation on E2 chick brain with the eucaryotic expression vector that encodes chick Pax-5 cDNA was used. Not only was a considerable amount of Pax-5 expressed ectopically in the transfected brain, but irregular bulging of the neuroepithelium was induced in the diencephalon and mesencephalon. At Pax-5 misexpressing sites, uptake of BrdU was increased. Histological examination of E7 transfected brain revealed that Pax-5 caused transdifferentiation of diencephalon into the tectum-like structure. In the bulges of the E7 mesencephalon, differentiation of laminar structure was repressed when compared to the normal side. In transfected embryos, En-2, Wnt-1 and Fgf8 were up-regulated ectopically, and Otx2 was down-regulated in the diencephalon to mesencephalon. Moreover, Ephrin-A2, which is expressed specifically in the tectum with a gradient highest at the caudal end, is suggested to be involved in pathfinding of the retinal fibers, and was induced in the bulges. When the mouse Fgf8 expression vector was electroporated, Pax-5 and chick Fgf8 were also induced ectopically. These results suggest that Pax-5, together with Fgf8, hold a higher position in the genetic hierarchy of the isthmus organizing center and regulate its activity.  相似文献   

4.
I Nasrallah  J A Golden 《Teratology》2001,64(2):107-113
BACKGROUND: Normal development of the face, eyes, and brain requires the coordinated expression of many genes. One gene that has been implicated in the development of each of these structures encodes the secreted protein, Sonic hedgehog (Shh). During central nervous system development, Shh is required for ventral specification along the entire neural axis. To further explore the role of Shh in chick brain and craniofacial development, we overexpressed Shh in the developing rostral neural tube METHODS: In order to determine if Shh is sufficient to ventralize the forebrain, we localized ectopically recombinant Shh protein to the rostral neural tube of chick embryos. The resulting embryos were evaluated morphologically and by assaying gene expression. RESULTS: Disruption in normal gene expression patterns was observed with a reduction or loss in expression of genes normally expressed in the dorsal forebrain (wnt-3a, wnt-4, and Pax-6) and expansion of ventrally expressed genes dorsally (HNF-3beta, Ptc). In addition to the genetic alterations observed in the neural tube, a craniofacial phenotype characterized by a reduction in many cranial neural crest-derived structures was observed. The eyes of Shh-treated embryos were also malformed. They were small with expansion of the retinal pigmented epithelium, enlarged optic stalks, and a reduction of neural retina. DISCUSSION: The ectopic localization of recombinant Shh protein in the rostral neural tube resulted in severe craniofacial anomalies and alterations of gene expression predicted by other studies. The system employed appears to be a model for studying the embryogenesis of malformations that involve the brain, eyes, and face.  相似文献   

5.
We compare the expression patterns in Ciona intestinalis of three members of the Pax gene family, CiPax3/7, CiPax6 and Cipax2/5/8. All three genes are expressed in restricted patterns in the developing central nervous system. At the tailbud stage, CiPax3/7 is present in three patches in the brain and along the posterior neural tube, CiPax6 throughout the anterior brain and along the posterior neural tube and CiPax2/5/8 in a restricted region of the posterior brain. Double in situ hybridisations were used to identify areas of overlap between the expression of different genes. This showed that CiPax3/7 overlaps with the boundaries of CiPax6 expression in the anterior brain, and with CiPax2/5/8 in the posterior brain. The overlap between CiPax3/7 and CiPax2/5/8 is unlike that described in the ascidian Halocynthia rorezti.  相似文献   

6.
7.
8.
Pax-6 expression during retinal regeneration in the adult newt   总被引:4,自引:0,他引:4  
The present study examined the expression of Pax-6 during retinal regeneration in adult newts using in situ hybridization. In a normal retina, Pax-6 is expressed in the ciliary marginal zone, the inner part of the inner nuclear layer, and the ganglion cell layer. After surgical removal of the neural retina, retinal pigment epithelial cells proliferate into retinal precursor cells and regenerate a fully functional retina. At the beginning of retinal regeneration, Pax-6 was expressed in all retinal precursor cells. As regeneration proceeded, differentiating cells appeared at the scleral and vitreal margins of the regenerating retina, which had no distinct plexiform layers. In this stage, the expression of Pax-6 was localized in a strip of cells along the vitreal margin of the regenerating retina. In the late stage of regeneration, when the layer structure was completed, the expression pattern of Pax-6 became similar to that of a normal retina. It was found that Pax-6 is expressed in the retinal precursor cells in the early regenerating retina and that the expression pattern of Pax-6 changed as cell differentiation proceeded during retinal regeneration.  相似文献   

9.
BACKGROUND: The antiepileptic valproic acid (VPA) is a teratogen whose embryopathic mechanism(s) remain uncertain. Elucidating potential cellular and molecular effects of VPA is complicated by systemic application paradigms. We developed an in ovo model to reproduce the teratogenic effects of VPA and a localized VPA application procedure to determine whether VPA can selectively effect abnormal development in one region of the embryo. METHODS: VPA was applied topically to chicken embryos in ovo at different embryonic stages. Embryos were later evaluated for gross and skeletal anomalies. Pax-2 and Pax-6 protein expression in the developing eye was also evaluated because VPA-induced eye anomalies are similar to those seen by the disruption of Pax-2 and Pax-6. For localized application, a thin sheet of the synthetic polymer Elvax was impregnated with VPA. A small piece of the VPA-impregnated polymer was applied directly to the presumptive wing bud region in Stage 10-17 embryos. Embryos were examined for gross and skeletal anomalies. Sham controls were employed for all experiments. RESULTS: Chicken embryos exposed to VPA in ovo demonstrated increased mortality, growth delay and anomalies similar to ones previously seen in humans: neural tube, cardiovascular, craniofacial, limb and skeletal. Pax-2 and Pax-6 protein expression was qualitatively diminished in the eye. Localized wing bud VPA exposure caused structural abnormalities in the developing wing in the absence of other anomalies in the embryos. These wing defects were similar to those observed after topical whole-embryo VPA application. CONCLUSIONS: These results indicate that at least one mechanism for the teratogenicity of VPA involves a direct effect on developing tissue. The nature of the abnormalities observed implies that this effect may be mediated by disruption of genes that regulate pattern formation.  相似文献   

10.
11.
The development of different brain regions involves the coordinated control of proliferation and cell fate specification along and across the neuraxis. Here, we identify Plxdc2 as a novel regulator of these processes, using in ovo electroporation and in vitro cultures of mammalian cells. Plxdc2 is a type I transmembrane protein with some homology to nidogen and to plexins. It is expressed in a highly discrete and dynamic pattern in the developing nervous system, with prominent expression in various patterning centres. In the chick neural tube, where Plxdc2 expression parallels that seen in the mouse, misexpression of Plxdc2 increases proliferation and alters patterns of neurogenesis, resulting in neural tube thickening at early stages. Expression of the Plxdc2 extracellular domain alone, which can be cleaved and shed in vivo, is sufficient for this activity, demonstrating a cell non-autonomous function. Induction of proliferation is also observed in cultured embryonic neuroepithelial cells (ENCs) derived from E9.5 mouse neural tube, which express a Plxdc2-binding activity. These experiments uncover a direct molecular activity of Plxdc2 in the control of proliferation, of relevance in understanding the role of this protein in various cancers, where its expression has been shown to be altered. They also implicate Plxdc2 as a novel component of the network of signalling molecules known to coordinate proliferation and differentiation in the developing nervous system.  相似文献   

12.
13.
14.
The collapsin response mediator proteins (CRMPs) are highly expressed in the vertebrate nervous system. CRMP2 has been shown to function in Semaphorin and lysophosphatidic acid induced growth cone collapse. Correspondingly, the highest levels of CRMP2 protein are found in the distal portion of growing axons. To understand the role of CRMP2 during embryonic development we have documented its expression pattern in zebrafish embryos at multiple stages. We find that CRMP2 is expressed in the major neural clusters of the embryonic brain during the primary stages of neurogenesis. From 20 somites through 30 hpf CRMP2 is expressed in the dorsal rostral cluster of the telencephalon, the ventral rostral cluster of the diencephalon, the ventral caudal cluster of the mesencephalon, and the hindbrain clusters. CRMP2 is also expressed in the trigeminal sensory ganglia and the Rohon Beard cells of the neural tube from 15 somites. By 48 hpf, we find expression of CRMP2 throughout the developing brain, trigeminal sensory ganglia, and Rohon Beard cells. CRMP2 is also detected in the retinal ganglion cell layer of the eye, and in the otic vesicle. Finally, we have compared the expression of CRMP2 to PlexinA4, a Semaphorin receptor expressed in sensory neurons, and find that their expression partially overlaps.  相似文献   

15.
SOX8 expression during chick embryogenesis   总被引:4,自引:0,他引:4  
We have isolated the SOX8 gene from the chicken embryo. This gene shows a high degree of sequence homology to SOX9 and SOX10. Detailed analysis of SOX8 expression by whole-mount in situ shows a dynamic and restricted expression pattern during chick development. SOX8 is expressed in the somitic derivative, the dermomyotome, the developing heart, pancreas, enteric neurone system, limb and the neural tube. This is the first detailed expression analysis of SOX8 in any species  相似文献   

16.
17.
18.
Histone deacetylases (HDACs) are a family of enzymes which regulate the acetylation state of nucleosomal histones, as well as non-histone proteins. By altering local chromatin architecture, HDACs play important roles in shaping cell differentiation and morphogenesis. Expression of class I HDACs during early chick development has so far not been analyzed. Here, we report the expression profile of chick class I HDACs from the onset of gastrulation (HH2) to day 4 of development and compare it to relevant stages during mouse development. Visualized by in situ hybridization to whole mount embryos and tissue sections, we found tissue-specific overlapping temporal and spatial expression domains for all four class I HDACs in chick and mouse, although species-specific differences could be identified. All class I HDACs in both species are highly expressed in the developing brain. In particular, HDAC1 is expressed at sites of anterior and posterior neural tube closure most obvious in the hot spot-like expression of HDAC1 in HH12 chicken embryos. A significant species-specific spatio-temporal expression pattern was observed for HDAC8. Whereas HDAC8 is exclusively found in fore- and midbrain regions during early mouse embryogenesis, the chick ortholog shows an expanded expression pattern, suggesting a more diversified role of HDAC8 in the chick system. Our results present a basis for further functional analysis of class I HDACs in chick development.  相似文献   

19.
20.
We have analysed the expression during mouse development of the four member Lingo/LERN gene family which encodes type 1 transmembrane proteins containing 12 extracellular leucine rich repeats, an immunoglobulin C2 domain and a short intracellular tail. Each family member has a distinct pattern of expression in the mouse embryo as is the case for the related NLRR, FLRT and LRRTM gene families. Lingo1/LERN1 is expressed in the developing trigeminal, facio-acoustic and dorsal root ganglia. An interesting expression pattern is also observed in the somites with expression localising to the inner surface of the dermomyotome in the ventro-caudal lip. Further expression is seen in lateral cells of the hindbrain and midbrain, lateral cells in the motor horn of the neural tube, the otic vesicle epithelium and epithelium associated with the developing gut. Lingo3/LERN2 is expressed in a broad but specific pattern in many tissues across the embryo. Lingo2/LERN3 is seen in a population of cells lying adjacent to the epithelial lining of the olfactory pit while Lingo4/LERN4 is expressed in the neural tube in a subset of progenitors adjacent to the motor neurons. Expression of all Lingo/LERN genes increases as the embryo develops but is low in the adult with only Lingo1/LERN1 and Lingo2/LERN3 being detectable in adult brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号