首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Myeloic cells express a peculiar surface receptor for extracellular ATP, called the P2Z/P2X7 purinoreceptor, which is involved in cell death signalling. Here, we investigated the role of caspases, a family of proteases implicated in apoptosis and the cytokine secretion. We observed that extracellular ATP induced the activation of multiple caspases including caspase-1, -3 and -8, and subsequent cleavage of the caspase substrates PARP and lamin B. Using caspase inhibitors, it was found that caspases were specifically involved in ATP-induced apoptotic damage such as chromatin condensation and DNA fragmentation. In contrast, inhibition of caspases only marginally affected necrotic alterations and cell death proceeded normally whether or not nuclear damage was blocked. Our results therefore suggest that the activation of caspases by the P2Z receptor is required for apoptotic but not necrotic alterations of ATP-induced cell death.  相似文献   

2.
Caspases, a unique family of cysteine proteases involved in cytokine activation and in the execution of apoptosis can be sub-grouped according to the length of their prodomain. Long prodomain caspases such as caspase-8 and caspase-9 are believed to act mainly as upstream caspases to cleave downstream short prodomain caspases such as caspases-3 and -7. We report here the identification of caspases as direct substrates of calcium-activated proteases, calpains. Calpains cleave caspase-7 at sites distinct from those of the upstream caspases, generating proteolytically inactive fragments. Caspase-8 and caspase-9 can also be directly cleaved by calpains. Two calpain cleavage sites in caspase-9 have been identified by N-terminal sequencing of the cleaved products. Cleavage of caspase-9 by calpain generates truncated caspase-9 that is unable to activate caspase-3 in cell lysates. Furthermore, direct cleavage of caspase-9 by calpain blocks dATP and cytochrome-c induced caspase-3 activation. Therefore our results suggest that calpains may act as negative regulators of caspase processing and apoptosis by effectively inactivating upstream caspases.  相似文献   

3.
Caspase-7 was considered to be redundant with caspase-3 because these related cysteine proteases share an optimal peptide recognition sequence and have several endogenous protein substrates in common. In addition, both caspases are proteolytically activated by the initiator caspase-8 and -9 during death receptor- and DNA-damage-induced apoptosis, respectively. However, a growing body of biochemical and physiological data indicate that caspase-7 also differs in significant ways from caspase-3. For instance, several substrates are specifically cleaved by caspase-7, but not caspase-3. Moreover, caspase-7 activation requires caspase-1 inflammasomes under inflammatory conditions, while caspase-3 processing proceeds independently of caspase-1. Finally, caspase-7 deficient mice are resistant to endotoxemia, whereas caspase-3 knockout mice are susceptible. These findings suggest that specifically interfering with caspase-7 activation may hold therapeutic value for the treatment of cancer and inflammatory ailments.  相似文献   

4.
Inhibitor of apoptosis (IAP) gene products play an evolutionarily conserved role in regulating programmed cell death in diverse species ranging from insects to humans. Human XIAP, cIAP1 and cIAP2 are direct inhibitors of at least two members of the caspase family of cell death proteases: caspase-3 and caspase-7. Here we compared the mechanism by which IAPs interfere with activation of caspase-3 and other effector caspases in cytosolic extracts where caspase activation was initiated by caspase-8, a proximal protease activated by ligation of TNF-family receptors, or by cytochrome c, which is released from mitochondria into the cytosol during apoptosis. These studies demonstrate that XIAP, cIAP1 and cIAP2 can prevent the proteolytic processing of pro-caspases -3, -6 and -7 by blocking the cytochrome c-induced activation of pro-caspase-9. In contrast, these IAP family proteins did not prevent caspase-8-induced proteolytic activation of pro-caspase-3; however, they subsequently inhibited active caspase-3 directly, thus blocking downstream apoptotic events such as further activation of caspases. These findings demonstrate that IAPs can suppress different apoptotic pathways by inhibiting distinct caspases and identify pro-caspase-9 as a new target for IAP-mediated inhibition of apoptosis.  相似文献   

5.
Granzyme B is a major cytotoxic T lymphocyte/natural killer (CTL/NK) granule protease that can activate members of the caspase family of cysteine proteases through processing of caspase zymogens. However, the molecular order and relative importance of caspase activation events that occur in target cells during granzyme B-initiated apoptosis has not been established. Here, we have examined the hierarchy of granzyme B-initiated caspase activation events using a cell-free system where all caspases are present at physiological levels. We show that granzyme B initiates a two-tiered caspase activation cascade involving seven caspases, where caspase-3 is required for the second tier of caspase activation events. Using a two-dimensional gel-based proteomics approach we have also examined the scale of granzyme B-initiated alterations to the proteome in the presence or absence of effector caspase-3 or -7. These studies indicate that granzyme B targets a highly restricted range of substrates and orchestrates cellular demolition largely through activation of caspase-3.  相似文献   

6.
The human inflammatory caspases, including caspase-1, -4, -5 and -12, are considered as key regulators of innate immunity protecting from sepsis and numerous inflammatory diseases. Caspase-1 is activated by proximity-induced dimerization following recruitment to inflammasomes but the roles of the remaining inflammatory caspases in inflammasome assembly are unclear. Here, we use caspase bimolecular fluorescence complementation to visualize the assembly of inflammasomes and dimerization of inflammatory caspases in single cells. We observed caspase-1 dimerization induced by the coexpression of a range of inflammasome proteins and by lipospolysaccharide (LPS) treatment in primary macrophages. Caspase-4 and -5 were only dimerized by select inflammasome proteins, whereas caspase-12 dimerization was not detected by any investigated treatment. Strikingly, we determined that certain inflammasome proteins could induce heterodimerization of caspase-1 with caspase-4 or -5. Caspase-5 homodimerization and caspase-1/-5 heterodimerization was also detected in LPS-primed primary macrophages in response to cholera toxin subunit B. The subcellular localization and organization of the inflammasome complexes varied markedly depending on the upstream trigger and on which caspase or combination of caspases were recruited. Three-dimensional imaging of the ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain)/caspase-1 complexes revealed a large spherical complex of ASC with caspase-1 dimerized on the outer surface. In contrast, NALP1 (NACHT leucine-rich repeat protein 1)/caspase-1 complexes formed large filamentous structures. These results argue that caspase-1, -4 or -5 can be recruited to inflammasomes under specific circumstances, often leading to distinctly organized and localized complexes that may impact the functions of these proteases.Correct assembly and regulation of inflammasomes is critical for mediating inflammation and preventing uncontrolled inflammation under infectious and sterile conditions. These supramolecular structures converge on the activation of caspase-1. Upon activation, caspase-1 cleaves the proinflammatory cytokines interleukin1β (IL-1β) and IL-18 to their active mature forms,1, 2 which are then released from the cell to direct the immediate removal of pathogens.Caspase-1 is activated by proximity-induced dimerization upon recruitment to inflammasomes, which are multiprotein signaling complexes that act as activation platforms.3 Many distinct inflammasomes exist, and each inflammasome includes a sensor protein (e.g., NALP1 (NACHT leucine-rich repeat protein 1)/NLRP1 (NOD-like receptor protein 1), NALP3/NLRP3, AIM2 (absent in melanoma 2) or IPAF (ICE protease-activating factor)/NLRC4 (NLR family CARD domain-containing protein 4)), which is activated by specific proinflammatory molecules. These include pathogen-derived stimuli, known as pathogen-associated molecular patterns (PAMPs), or non-pathogenic inflammatory stimuli, known as damage-associated molecular patterns.4 Inflammasome assembly is governed by a series of homotypic interactions, which are mediated by specific protein:protein interaction domains, such as the pyrin domain (PYD) and the caspase recruitment domain (CARD).5, 6 For example, NALP1 and NALP3 both contain a PYD at their C terminus that binds to the PYD in the adaptor protein, ASC (apoptosis-associated speck-like protein containing a CARD).7, 8 ASC also contains a CARD,9 which binds to the CARD in the prodomain of caspase-1 (C1-Pro), resulting in caspase-1 dimerization and activation.10 Inflammasomes can also be ASC-independent, such as IPAF, which interacts directly with caspase-1.11 Interestingly, ASC can enhance IPAF-induced caspase-1 activation,12, 13 which indicates that more complex interactions between these proteins may exist.Caspase-1 is one of the inflammatory caspases, including the human caspases (caspase-1, -4, -5 and -12) and murine caspase-11.14 The roles of caspase-4, -5, and -12 in caspase-1 activation and inflammasome pathways are not clear. Full-length caspase-12, which is only expressed by ~20% of people of African descent, can inhibit caspase-1 activity.15 Most of all human populations express the short form of caspase-12 (caspase-12 S or C12S), which arose from a point mutation leading to a premature stop codon just after the prodomain. This truncated form of caspase-12 is associated with increased resistance to sepsis,15 indicating that caspase-12 has an important role in inflammation. Caspase-11 mediates caspase-1 activation in response to Escherichia coli and Citrobacter rodentium in mice.16 Caspase-11 also triggers an inflammatory form of cell death, known as pyroptosis, independent of caspase-1, ASC and NALP3. This is known as the noncanonical inflammasome pathway.16 Humans do not express caspase-11 and express caspase-4 and -5 instead. Recent evidence indicates that caspase-4 and -5 act as direct intracellular sensors for lipopolysaccharide (LPS) to induce pyroptosis, independent of any additional inflammasome proteins.17 However, this does not rule out the possibility that caspase-4 and -5 can be recruited to inflammasomes under certain circumstances.The inflammatory caspases are considered to be initiator caspases, based on structural similarities between them and caspase-2, -8 and -9.18 We previously reported the use of caspase bimolecular fluorescence complementation (BiFC) to measure induced proximity of the initiator caspase, caspase-2.19 We adapted BiFC, where non-fluorescent fragments of the yellow fluorescent protein, Venus (‘split Venus''), can associate to reform the fluorescent complex when fused to interacting proteins. When caspase-2 was fused to each half of split Venus, the recruitment of caspase-2 to its activation platform and the subsequent induced proximity resulted in association of the two Venus halves. This resulted in an increase in fluorescence that represents caspase dimerization. Our caspase BiFC method facilitates specific analysis of caspase interactions at the level of the activation platform. Importantly, caspase BiFC can reveal the structural organization and localization of activation platforms in living cells.Here, we extend the caspase BiFC approach to interrogate the inflammatory caspases. We show that there are considerable differences in the organization and distribution of different inflammasomes depending on the upstream signals and on which inflammatory caspase is recruited. Our studies reveal unexpected heterodimerization interactions between caspase-1 and additional inflammatory caspases, presenting a new outcome of inflammasome assembly.  相似文献   

7.
IL-1β and IL-18 are crucial regulators of inflammation and immunity. Both cytokines are initially expressed as inactive precursors, which require processing by the protease caspase-1 for biological activity. Caspase-1 itself is activated in different innate immune complexes called inflammasomes. In addition, caspase-1 activity regulates unconventional protein secretion of many other proteins involved in inflammation and repair. Human caspase-4 is a poorly characterized member of the caspase family, which is supposed to be involved in endoplasmic reticulum stress-induced apoptosis. However, its gene is located on the same locus as the caspase-1 gene, which raises the possibility that caspase-4 plays a role in inflammation. In this study, we show that caspase-4 expression is required for UVB-induced activation of proIL-1β and for unconventional protein secretion by skin-derived keratinocytes. These processes require expression of the nucleotide-binding domain leucine-rich repeat containing, Pyrin domain containing-3 inflammasome, and caspase-4 physically interacts with its central molecule caspase-1. As the active site of caspase-4 is required for activation of caspase-1, the latter most likely represents a substrate of caspase-4. Caspase-4 expression is also essential for efficient nucleotide-binding domain leucine-rich repeat containing, Pyrin domain containing-3 and for absent in melanoma 2 inflammasome-dependent proIL-1β activation in macrophages. These results demonstrate an important role of caspase-4 in inflammation and innate immunity through activation of caspase-1. Therefore, caspase-4 represents a novel target for the treatment of (auto)inflammatory diseases.  相似文献   

8.
The caspase family of proteases represents the main machinery by which apoptosis occurs. In vitro studies have revealed that upstream caspases are activated in response to apoptotic stimuli, and the active caspases in turn process downstream effector caspases that are involved in the destruction of cellular structure. Caspase-9 is an upstream caspase that can become active in response to cellular damage, including deprivation of growth factors and exposure to oxidative stress in vitro. Little is known, however, about how activation of caspase-9 is temporally and spatially regulated in vivo, e.g. during development. We have identified vimentin as the first example of a caspase-9 substrate that is not a downstream procaspase. Immunohistochemical analysis, using a specific antibody against the vimentin fragments generated by caspase-9, showed that caspase-9 cleaves vimentin in apoptotic cells in the embryonic nervous system and the interdigital regions. This result is consistent with observations that gene knockouts of caspase-9 and its activator, Apaf-1, result in developmental defects in these tissues. Our results show that the specific antibody is useful for in situ detection of caspase-9 activation in programmed cell death.  相似文献   

9.
Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation   总被引:17,自引:0,他引:17  
Dysregulation of apoptosis contributes to the pathogenesis of many human diseases. As effectors of the apoptotic machinery, caspases are considered potential therapeutic targets. Using an established in vivo model of Fas-mediated apoptosis, we demonstrate here that elimination of certain caspases was compensated in vivo by the activation of other caspases. Hepatocyte apoptosis and mouse death induced by the Fas agonistic antibody Jo2 required proapoptotic Bcl-2 family member Bid and used a Bid-mediated mitochondrial pathway of caspase activation; deficiency in caspases essential for this pathway, caspase-9 or caspase-3, unexpectedly resulted in rapid activation of alternate caspases after injection of Jo2, and therefore failed to protect mice against Jo2 toxicity. Moreover, both ultraviolet and gamma irradiation, two established inducers of the mitochondrial caspase-activation pathway, also elicited compensatory activation of caspases in cultured caspase-3(-/-) hepatocytes, indicating that the compensatory caspase activation was mediated through the mitochondria. Our findings provide direct experimental evidence for compensatory pathways of caspase activation. This issue should therefore be considered in developing caspase inhibitors for therapeutic applications.  相似文献   

10.
Cysteine-dependent aspartate-specific proteases (caspases) are the cellular executors of apoptosis. Caspase-14 is the most divergent member of the family of mammalian caspases and displays a variety of unique characteristics. It is expressed in a limited number of tissues and has the shortest amino acid sequence within the caspase protein family. During induction of apoptosis, it is not processed, whereas terminal differentiation in skin leads to cleavage of caspase-14. Here we show that 40% of lung squamous cell carcinomas, 22% of breast cancers, and about 80% of cervical carcinomas express caspase-14. Immunohistochemistry reveals that caspase-14 is localized in areas of ongoing differentiation close to necrotic sites but is not strictly associated with the differentiation markers keratin-1/-10. Caspase-14 is neither mutated nor alternatively spliced in the tumors analyzed. Furthermore, caspase-14 is not processed into a small and large subunit, a process critical for the proteolytic activation of known effector caspases. We conclude that conditions exist in tumors leading to re-expression of this normally silent gene.  相似文献   

11.
A subgroup of caspase family of inflammatory caspases (-1, -4, -5, -11, and -12) play important role during cytokine maturation and inflammation but their regulation is not well understood as much as the initiator and effector caspases. Here, the biochemical mechanism of caspase-4 activation is elucidated. With citrate, a well-known kosmotrope to enhance the monomer-dimer transition, caspase-4 was activated approximately 40 times that was comparable with that of caspase-9 ( approximately 75-fold increments). The activation reaction was mainly bimolecular (n=1.67+/-0.04) for monomeric caspase-4. In addition, the interdomain cleavage was also responsible to activate caspase-4 more than 100-fold, again comparable with that of effector caspases where the proteolytic processing is considered as the sole activation mechanism. Thus, caspase-4 shows a novel activation mechanism of the synergism between dimerization and proteolysis that sharply differs from the established activation mechanism of dimerization for initiators and interdomain cleavage for effector caspases.  相似文献   

12.
13.
Caspases belong to a family of highly conserved aspartate-specific cysteine proteases and are members of the interleukin-1beta-converting enzyme family, present in multicellular organisms. The caspase gene family consists of 15 mammalian members that are grouped into two major sub-families, namely inflammatory caspases and apoptotic caspases. The apoptotic caspases are further subdivided into two sub-groups, initiator caspases and executioner caspases. The caspases form a caspase-cascade system that plays the central role in the induction, transduction and amplification of intracellular apoptotic signals for cell fate determination, regulation of immunity, and cellular proliferation and differentiation. The substrates of apoptotic caspases have been associated with cellular dismantling, while inflammatory caspases mediate the proteolytic activation of inflammatory cytokines. The activation of this delicate caspase-cascade system and its functions are regulated by a variety of regulatory molecules, such as the inhibitor of apoptosis protein (IAP), FLICE, calpain, and Ca(2+). Based on the available literature we have reviewed and discussed the members of the caspase family, caspase-cascade system, caspase-regulating molecules and their apoptotic and non-apoptotic functions in cellular life and death. Also recent progress in the molecular structure and physiological role of non-mammalian caspases such as paracaspases, metacaspases and caspase-like-protease family members are included in relation to that of mammalian species.  相似文献   

14.
Apoptosis plays important roles in host defense, including the elimination of virus-infected cells. The executioners of apoptosis are caspase family proteases. We report that vaccinia virus-encoded F1L protein, previously recognized as anti-apoptotic viral Bcl-2 family protein, is a caspase-9 inhibitor. F1L binds to and specifically inhibits caspase-9, the apical protease in the mitochondrial cell death pathway while failing to inhibit other caspases. In cells, F1L inhibits apoptosis and proteolytic processing of caspases induced by overexpression of caspase-9 but not caspase-8. An N-terminal region of F1L preceding the Bcl-2-like fold accounts for caspase-9 inhibition and significantly contributes to the anti-apoptotic activity of F1L. Viral F1L thus provides the first example of caspase inhibition by a Bcl-2 family member; it functions both as a suppressor of proapoptotic Bcl-2 family proteins and as an inhibitor of caspase-9, thereby neutralizing two sequential steps in the mitochondrial cell death pathway.  相似文献   

15.
Proteases for cell suicide: functions and regulation of caspases.   总被引:20,自引:0,他引:20  
Caspases are a large family of evolutionarily conserved proteases found from Caenorhabditis elegans to humans. Although the first caspase was identified as a processing enzyme for interleukin-1beta, genetic and biochemical data have converged to reveal that many caspases are key mediators of apoptosis, the intrinsic cell suicide program essential for development and tissue homeostasis. Each caspase is a cysteine aspartase; it employs a nucleophilic cysteine in its active site to cleave aspartic acid peptide bonds within proteins. Caspases are synthesized as inactive precursors termed procaspases; proteolytic processing of procaspase generates the tetrameric active caspase enzyme, composed of two repeating heterotypic subunits. Based on kinetic data, substrate specificity, and procaspase structure, caspases have been conceptually divided into initiators and effectors. Initiator caspases activate effector caspases in response to specific cell death signals, and effector caspases cleave various cellular proteins to trigger apoptosis. Adapter protein-mediated oligomerization of procaspases is now recognized as a universal mechanism of initiator caspase activation and underlies the control of both cell surface death receptor and mitochondrial cytochrome c-Apaf-1 apoptosis pathways. Caspase substrates have bene identified that induce each of the classic features of apoptosis, including membrane blebbing, cell body shrinkage, and DNA fragmentation. Mice deficient for caspase genes have highlighted tissue- and signal-specific pathways for apoptosis and demonstrated an independent function for caspase-1 and -11 in cytokine processing. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits.  相似文献   

16.
Members of the caspase family of cysteine proteases coordinate the highly disparate processes of apoptosis and inflammation. However, although hundreds of substrates for the apoptosis effector caspases (caspase-3 and caspase-7) have been identified, only two confirmed substrates for the key inflammatory protease (caspase-1) are known. Whether this reflects intrinsic differences in the substrate specificity of inflammatory versus apoptotic caspases or their relative abundance in vivo is unknown. To address this issue, we have compared the specificity of caspases-1, -3, and -7 toward peptide and protein substrates. Contrary to expectation, caspase-1 displayed concentration-dependent promiscuity toward a variety of substrates, suggesting that caspase-1 specificity is maintained by restricting its abundance. Although endogenous concentrations of caspase-1 were found to be similar to caspase-3, processed caspase-1 was found to be much more labile, with a half-life of ~9 min. This contrasted sharply with the active forms of caspase-3 and caspase-7, which exhibited half-lives of 8 and 11 h, respectively. We propose that the high degree of substrate specificity displayed by caspase-1 is maintained through rapid spontaneous inactivation of this protease.  相似文献   

17.
Structure, expression, and function of the Xenopus laevis caspase family   总被引:3,自引:0,他引:3  
Caspases, a family of cysteine proteases, have been recognized as the central executors of programmed cell death. Nonetheless, the information on the caspase family has been limited to mammals, Drosophila, and nematodes. To examine the structure and characterization of the Xenopus caspase family, we have cloned the cDNAs encoding caspase-2 and -6-10 in addition to caspase-1 and -3, which we characterized previously (Yaoita, Y., and Nakajima, K. (1997) J. Biol. Chem. 272, 5122-5127). First, the existence of these caspases in frog suggests that the caspase cascades clarified in mammals are conserved at least from Amphibia. Interestingly, Xenopus caspase-1, -8, and -10 (especially caspase-8) showed a lower degree of identity to human equivalents than the other caspases. Second, mRNAs of many caspases increased during the climax of metamorphosis in regressing organs, tail, and intestine, where programmed cell death occurs, but not in apoptotic tail-derived cultured cells (XLT-15-11) treated with thyroid hormone, showing that new RNA synthesis of caspases is dispensable to programmed cell death. Third, comparison of human and Xenopus caspase sequences implies that some proposed regulations of human caspases are not conserved in frog.  相似文献   

18.
多细胞生物的细胞凋亡(apoptosis)和炎症反应(inflammation)分别在内稳态维持和对抗外源微生物入侵的过程中具有重要作用.凋亡小体和炎症小体则是调节这两种生物学过程的关键复合物.凋亡小体和炎症小体的功能都是作为caspase的激活平台,但是前者激活caspase-9,而后者则是激活炎症性caspase-1.本文综述近年来关于这两类复合体激活机制的研究进展.  相似文献   

19.
Caspase-dependent apoptotic pathways in CNS injury   总被引:15,自引:0,他引:15  
Recent studies have suggested a role for neuronal apoptosis in cell loss following acute CNS injury as well as in chronic neurodegeneration. Caspases are a family of cysteine requiring aspartate proteases with sequence similarity to Ced-3 protein of Caenorhabditis elegans. These proteases have been found to contribute significantly to the morphological and biochemical manifestations of apoptotic cell death. Caspases are translated as inactive zymogens and become active after specific cleavage. Of the 14 identified caspases, caspase-3 appears to be the major effector of neuronal apoptosis induced by a variety of stimuli. A role for caspase-3 in injury-induced neuronal cell death has been established using semispecific peptide caspase inhibitors. This article reviews the current literature relating to pathways regulating caspase activation in apoptosis associated with acute and chronic neurodegeneration, and suggests that identification of critical upstream caspase regulatory mechanisms may permit more effective treatment of such disorders.  相似文献   

20.
Caspase-11, a member of the murine caspase family, has been shown to be an upstream activator of caspase-1 in regulating cytokine maturation. We demonstrate here that in addition to its defect in cytokine maturation, caspase-11-deficient mice have a reduced number of apoptotic cells and a defect in caspase-3 activation after middle cerebral artery occlusion (MCAO), a mouse model of stroke. Recombinant procaspase-11 can autoprocess itself in vitro. Purified active recombinant caspase-11 cleaves and activates procaspase-3 very efficiently. Using a positional scanning combinatorial library method, we found that the optimal cleavage site of caspase-11 was (I/L/V/P)EHD, similar to that of upstream caspases such as caspase-8 and -9. Our results suggest that caspase-11 is a critical initiator caspase responsible for the activation of caspase-3, as well as caspase-1 under certain pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号