首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bioconversion of xylose to xylitol by Candida guilliermondii FTI 20037 cultivated in sugar cane bagasse hemicellulosic hydrolyzate was influenced by cell inoculum level, age of inoculum and hydrolyzate concentration. The maximum xylitol productivity (0.75 g L−1 h−1) occurred in tests carried out with hydrolyzate containing 54.5 g L−1 of xylose, using 3.0 g L−1 of a 24-h-old inoculum. Xylitol productivity and cell concentration decreased with hydrolyzate containing 74.2 g L−1 of xylose. Received 02 February 1996/ Accepted in revised form 15 November 1996  相似文献   

2.
A yeast strain Kluyveromyces sp. IIPE453 (MTCC 5314), isolated from soil samples collected from dumping sites of crushed sugarcane bagasse in Sugar Mill, showed growth and fermentation efficiency at high temperatures ranging from 45°C to 50°C. The yeast strain was able to use a wide range of substrates, such as glucose, xylose, mannose, galactose, arabinose, sucrose, and cellobiose, either for growth or fermentation to ethanol. The strain also showed xylitol production from xylose. In batch fermentation, the strain showed maximum ethanol concentration of 82 ± 0.5 g l−1 (10.4% v/v) on initial glucose concentration of 200 g l−1, and ethanol concentration of 1.75 ± 0.05 g l−1 as well as xylitol concentration of 11.5 ± 0.4 g l−1 on initial xylose concentration of 20 g l−1 at 50°C. The strain was capable of simultaneously using glucose and xylose in a mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1, achieving maximum ethanol concentration of 38 ± 0.5 g l−1 and xylitol concentration of 14.5 ± 0.2 g l−1 in batch fermentation. High stability of the strain was observed in a continuous fermentation by feeding the mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1 by recycling the cells, achieving maximum ethanol concentration of 30.8 ± 6.2 g l−1 and xylitol concentration of 7.35 ± 3.3 g l−1 with ethanol productivity of 3.1 ± 0.6 g l−1 h−1 and xylitol productivity of 0.75 ± 0.35 g l−1 h−1, respectively.  相似文献   

3.
Xylitol, a functional sweetener, was produced from xylose using Candida tropicalisATCC 13803. A two-substrate fermentation was designed in order to increase xylitol yield and volumetric productivity. Glucose was used initially for cell growth followed by conversion of xylose to xylitol without cell growth and by-product formation after complete depletion of glucose. High glucose concentrations increased volumetric productivity by reducing conversion time due to high cell mass, but also led to production of ethanol, which, in turn, inhibited cell growth and xylitol production. Computer simulation was undertaken to optimize an initial glucose concentration using kinetic equations describing rates of cell growth and xylose bioconversion as a function of ethanol concentration. Kinetic constants involved in the equations were estimated from the experimental results. Glucose at 32 g L−1 was estimated to be an optimum initial glucose concentration with a final xylose concentration of 86 g L−1 and a volumetric productivity of 5.15 g-xylitol L−1 h−1. The two-substrate fermentation was performed under optimum conditions to verify the computer simulation results. The experimental results were in good agreement with the predicted values of simulation with a xylitol yield of 0.81 g-xylitol g-xylose−1 and a volumetric productivity of 5.06 g-xylitol L−1 h−1. Received 16 June 1998/ Accepted in revised form 28 February 1999  相似文献   

4.
The maximum ethanol concentration produced from glucose in defined media at 45°C by the thermotolerant yeast Kluyveromyces marxianus IMB3 was 44 g L−1. Acclimatisation of the strain through continuous culture at ethanol concentrations up to 80 g L−1, shifted the maximum ethanol concentration at which growth was observed from 40 g L−1 to 70 g L−1. Four isolates were selected from the continuous culture, only one of which produced a significant increase in final ethanol concentration (50 ± 0.4 g L−1), however in subsequent fermentations, following storage on nutrient agar plates, the maximum ethanol concentration was comparable with the original isolate. The maximum specific ethanol production rates (approximately 1.5 g (gh)−1) were also comparable with the original strain except for one isolate (0.7 g (gh)−1). The specific ethanol productivity decreased with ethanol concentration; this decrease correlated linearly (rval 0.92) with cell viability. Due to the transience of induced ethanol tolerance in the strain it was concluded that this was not a valid method for improving final ethanol concentrations or production rates. Received 18 July 1997/ Accepted in revised form 19 February 1998  相似文献   

5.
Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of a glucose/xylose mixture was carried out by Saccharomyces cerevisiae in the presence of xylose isomerase. The SIF of 50 g l−1 xylose gave an ethanol concentration and metabolic yield of 7.5 g l−1 and 0.36 g (g xylose consumed)−1. These parameters improved to 13.4 g l−1 and 0.40 respectively, when borate was added to the medium. The SICF of a mixture of 50 g l−1 glucose and 50 g l−1 xylose gave an ethanol concentration and metabolic yield of 29.8 g l−1 and 0.42 respectively, in the presence of borate. Temperature modulation from 30 °C to 35 °C during fermentation further enhanced the above parameters to 39 g l−1 and 0.45 respectively. The approach was extended to the bioconversion of sugars present in a real lignocellulose hydrolysate (peanut-shell hydrolysate) to ethanol, with a fairly good yield. Received: 14 May 1999 / Received revision: 27 September 1999 / Accepted: 2 October 1999  相似文献   

6.
Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L−1 was obtained at a dilution rate of 0.22 h−1 with glucose as a substrate compared to 12.64 g L−1 at 0.5 h−1 dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L−1 h−1) was obtained at a dilution rate of 1.9 h−1 with glucose as a substrate whereas solvent productivity (12.14 g L−1 h−1) was obtained at a dilution rate of 1.5 h−1 with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.  相似文献   

7.
We have analysed the influence of the initial pH of the medium and the quantity of aeration provided during the batch fermentation of solutions of d-xylose by the yeast Hansenula polymorpha (34438 ATCC). The initial pH was altered between 3.5 and 6.5 whilst aeration varied between 0.0 and 0.3 vvm. The temperature was kept at 30 °C during all the experiments. Hansenula polymorpha is known to produce high quantities of xylitol and low quantities of ethanol. The most favourable conditions for the growth of xylitol turned out to be: an initial pH of between 4.5 and 5.5 and the aeration provided by the stirring vortex alone. Thus, at an initial pH of 5.5, the maximum specific production rate (μm) was 0.41 h−1, the overall biomass yield (Y x/s G) was 0.12 g g−1, the specific d-xylose-consumption rate (q s ) was 0.075 g g−1 h−1 (for t = 75 h), the specific xylitol-production rate (q Xy ) was 0.31 g g−1 h−1 (for t = 30 h) and the overall yields of ethanol (Y E/s G) and xylitol (Y Xy/s G) were 0.017 and 0.61 g g−1 respectively. Both q s and q Xy decreased during the course of the experiments once the exponential growth phase had finished. Received: 26 March 1998 / Received revision: 30 June 1998 / Accepted: 2 July 1998  相似文献   

8.
The present work evaluated the key enzymes involved in xylitol production (xylose reductase [XR] and xylitol dehydrogenase [XDH]) and their correlation with xylose, arabinose, and acetic acid assimilation during cultivation of Candida guilliermondii FTI 20037 cells in sugarcane bagasse hemicellulosic hydrolysate. For this purpose, inocula previously grown either in sugarcane bagasse hemicellulosic hydrolysate (SBHH) or in semidefined medium (xylose as a substrate) were used. The highest xylose/acetic acid consumption ratio (1.78) and the lowest arabinose consumption (13%) were attained in the fermentation using inoculum previously grown in semidefined medium (without acetic acid and arabinose). In this case, the highest values of XR (1.37 U mg prot−1) and XDH (0.91 U mg prot−1) activities were observed. The highest xylitol yield (∼0.55 g g−1) and byproducts (ethanol and glycerol) formation were not influenced by inoculum procedure. However, the cell previously grown in the hydrolysate was effective in enhancing xylitol production by keeping the XR enzyme activity at high levels (around 0.99 U·mgprot−1), reducing the XDH activity (34.0%) and increasing xylitol volumetric productivity (26.5%) with respect to the inoculum cultivated in semidefined medium. Therefore, inoculum adaptation to SBHH was shown to be an important strategy to improve xylitol productivity.  相似文献   

9.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

10.
A repeated batch fermentation system was used to produce ethanol using an osmotolerant Saccharomyces cerevisiae (VS3) immobilized in calcium alginate beads. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Fermentation was carried for six cycles with 125, 250 or 500 beads using 150, 200 or 250 g glucose L−1 at 30°C. The maximum amount of ethanol produced by immobilized VS3 using 150 g L−1 glucose was only 44 g L−1 after 48 h, while the amount of ethanol produced by free cells in the first cycle was 72 g L−1. However in subsequent fed batch cultures more ethanol was produced by immobilized cells compared to free cells. The amount of ethanol produced by free cells decreased from 72 g L−1 to 25 g L−1 after the fourth cycle, while that of immobilized cells increased from 44 to 72 g L−1. The maximum amount of ethanol produced by immobilized VS3 cells using 150, 200 and 250 g glucose L−1 was 72.5, 93 and 87 g ethanol L−1 at 30°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 222–226. Received 16 September 1999/ Accepted in revised form 22 December 1999  相似文献   

11.
Candida tropicalis, a strain isolated from the sludge of a factory manufacturing xylose, produced a high xylitol concentration of 131 g/l from 150 g/l xylose at 45 h in a flask. Above 150 g/l xylose, however, volumetric xylitol production rates decreased because of a lag period in cell growth. In fed-batch culture, the volumetric production rate and xylitol yield from xylose varied substantially with the controlled xylose concentration and were maximum at a controlled xylose concentration of 60 g/l. To increase the xylitol yield from xylose, feeding experiments using different ratios of xylose and glucose were carried out in a fermentor. The maximum xylitol yield from 300 g/l xylose was 91% at a glucose/xylose feeding ratio of 15%, while the maximum volumetric production rate of xylitol was 3.98 g l−1 h−1 at a glucose/xylose feeding ratio of 20%. Xylitol production was found to decrease markedly as its concentration rose above 250 g/l. In order to accumulate xylitol to 250 g/l, 270 g/l xylose was added in total, at a glucose/xylose feeding ratio of 15%. Under these conditions, a final xylitol production of 251 g/l, which corresponded to a yield of 93%, was obtained from 270 g/l xylose in 55 h. Received: 20 April 1998 / Received revision: 29 May 1998 / Accepted: 19 June 1998  相似文献   

12.
Autoselective xylose-utilising strains of Saccharomyces cerevisiae expressing the xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) genes of Pichia stipitis were constructed by replacing the chromosomal FUR1 gene with a disrupted fur1::LEU2 allele. Anaerobic fermentations with 80 g l−1 d-xylose as substrate showed a twofold higher consumption of xylose in complex medium compared to defined medium. The xylose consumption rate increased a further threefold when 20 g l−1 d-glucose or raffinose was used as co-substrate together with 50 g l−1 d-xylose. Xylose consumption was higher with raffinose as co-substrate than with glucose (85% versus 71%, respectively) after 82 h fermentations. A high initial ethanol concentration and moderate levels of glycerol and acetic acid accompanied glucose as co-substrate, whereas the ethanol concentration gradually increased with raffinose as co-substrate with no glycerol and much less acetic acid formation. Received: 12 March 1999 / Received revision: 31 June 1999 / Accepted: 5 July 1999  相似文献   

13.

The present study evaluated 13 strains of yeast for ethanol and xylitol production from xylose. Among them, Spathaspora hagerdaliae UFMG-CM-Y303 produced ethanol yields (YP/S) of 0.25 g g− 1 and 0.39 g g− 1 under aerobic and microaerophilic conditions, respectively, from a mixture of glucose and xylose in flasks. A pH of 5.0 and an inoculum of 3.0 × 108 cells mL− 1r resulted in the highest ethanol yields. These conditions were tested in a bioreactor for fermenting a medium containing an enzymatic hydrolysate of sugarcane bagasse with 15.5 g L− 1 of glucose and 3 g L− 1 of xylose, and achieved a YP/S of 0.47 g g− 1, in relation to total available sugar. These results suggest that S. hagerdaliae UFMG-CM-Y303 has potential for use in second-generation ethanol studies.

  相似文献   

14.
The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated in this work. This strain was preliminarily cultivated in a synthetic medium containing glucose and xylose and was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pretreatment and used as fermentation media. This hydrolysate is rich in glucose, xylose, and arabinose and contains traces of formic acid and acetic acid. In batch fermentations of CABH at pH 4.5, the strain produced only ethanol. The effects of temperature on the kinetic parameters of ethanol fermentation by K. marxianus CE025 using CABH were also evaluated. Maximum specific growth rate (μmax), overall yields of ethanol based on glucose consumption YP \mathord
/ \vphantom P S1 S1 \textGY_{{P \mathord{\left/ {\vphantom {P {S_1 }}} \right. \kern-\nulldelimiterspace} {S_1 }}}^{\text{G}} and based on glucose + xylose consumption (Y P/S ), overall yield of ethanol based on biomass (Y P/X ), and ethanol productivity (P E) were determined as a function of temperature. Best results of ethanol production were achieved at 30°C, which is also quite close to the optimum temperature for the formation of biomass. The process yielded 12.36 ± 0.06 g l−1 of ethanol with a volumetric production rate of 0.257 ± 0.002 g l−1 h−1 and an ethanol yield of 0.417 ± 0.003 g g−1 glucose.  相似文献   

15.

Background

Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.

Results

The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.

Conclusion

The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.  相似文献   

16.
Mucor indicus can be used to produce ethanol from a variety of sugars, including pentose’s. An extract of it, produced by autolysis, could replace yeast extract in culture medium with improved production of ethanol. At 10 g l−1, the extract gave a higher ethanol yield (0.47 g g−1) and productivity (0.71 g l−1 h−1) compared to medium containing yeast extract (yield 0.45 g g−1; productivity 0.67 g l−1 h−1).  相似文献   

17.
The aim of this work was to optimize the fermentation parameters in the shake-flask culture of marine bacterium Wangia sp. C52 to increase cold-adapted amylase production using two statistical experimental methods including Plackett–Burman design, which was applied to find the key ingredients for the best medium composition, and response surface methodology, which was used to determine the optimal concentrations of these components. The results showed starch, tryptone, and initial pH had significant effects on the cold-adapted amylase production. A central composite design was then employed to further optimize these three factors. The experimental results indicated that the optimized composition of medium was 6.38 g L−1 starch, 33.84 g L−1 tryptone, 3.00 g L−1 yeast extract, 30 g L−1 NaCl, 0.60 g L−1 MgSO4 and 0.56 g L−1 CaCl2. The optimized cultivation conditions for amylase production were pH 7.18, a temperature of 20°C, and a shaking speed of 180 rpm. Under the proposed optimized conditions, the amylase experimental yield (676.63 U mL−1) closely matched the yield (685.60 U mL−1) predicted by the statistical model. The optimization of the medium contributed to tenfold higher amylase production than that of the control in shake-flask experiments.  相似文献   

18.
Corn steep water (CSW) medium (1.6% solids plus 6% glucose) was evaluated for growth and butanol production by Clostridium beijerinckii NCIMB 8052 wild-type and hyper-amylolytic, hyper-butanol-producing mutant strain BA101. CSW alone was not a suitable substrate, whereas addition of glucose supported growth and butanol production by both strains. In a batch-scale fermentation using an optimized 6% glucose-1.6% solids CSW medium, C. beijerinckii NCIMB 8052 and strain BA101 produced 10.7 g L−1 and 14.5 g L−1 of butanol, respectively. The total solvents (acetone, butanol, and ethanol) produced by C. beijerinckii NCIMB 8052 and strain BA101 were 14 g L−1 and 20 g L−1, respectively. Initial fermentation in small-scale flasks containing 6% maltodextrin-1.6% solids concentration CSW medium resulted in 6 g L−1 and 12.6 g L−1 of butanol production by C. beijerinckii NCIMB 8052 and strain BA101, respectively. CSW can serve as an economic source of nitrogen, vitamins, amino acids, minerals, and other nutrients. Thus, it is feasible to use 6% glucose-1.6% solids CSW medium in place of semi-defined P2 medium. Received 9 February 1998/ Accepted in revised form 1 September 1998  相似文献   

19.
In this study, simultaneous saccharification and fermentation (SSF) was employed to produce ethanol from 1% sodium hydroxide-treated rice straw in a thermostatically controlled glass reactor using 20 FPU gds−1 cellulase, 50 IU gds−1 β-glucosidase, 15 IU gds−1 pectinase and a newly isolated thermotolerant Pichia kudriavzevii HOP-1 strain. Scanning electron micrograph images showed that the size of the P. kudriavzevii cells ranged from 2.48 to 6.93 μm in diameter while the shape of the cells varied from oval, ellipsoidal to elongate. Pichia kudriavzevii cells showed extensive pseudohyphae formation after 5 days of growth and could assimilate sugars like glucose, sucrose, galactose, fructose, and mannose but the cells could not assimilate xylose, arabinose, cellobiose, raffinose, or trehalose. In addition, the yeast cells could tolerate up to 40% glucose and 5% NaCl concentrations but their growth was inhibited at 1% acetic acid and 0.01% cyclohexamide concentrations. Pichia kudriavzevii produced about 35 and 200% more ethanol than the conventional Saccharomyces cerevisiae cells at 40 and 45°C, respectively. About 94% glucan in alkali-treated rice straw was converted to glucose through enzymatic hydrolysis within 36 h. Ethanol concentration of 24.25 g l−1 corresponding to 82% theoretical yield on glucan basis and ethanol productivity of 1.10 g l−1 h−1 achieved using P. kudriavzevii during SSF hold promise for scale-up studies. An insignificant amount of glycerol and no xylitol was produced during SSF. To the best of our knowledge, this is the first study reporting ethanol production from any lignocellulosic biomass using P. kudriavzevii.  相似文献   

20.
Candida shehatae cells pre-grown on D-xylose simultaneously consumed mixtures of D-xylose and D-glucose, under both non-growing (anoxic) and actively growing conditions (aerobic), to produce ethanol. The rate of D-glucose consumption was independent of the D-xylose concentration for cells induced on D-xylose. However, the D-xylose consumption rate was approximately three times lower than the D-glucose consumption rate at a 50% D-glucose: 50% D-xylose mixture. Repression was not observed (substrate utilization rates were approximately equal) when the percentage of D-glucose and D-xylose was changed to 22% and 78%, respectively. In fermentations with actively growing cells (50% glucose and D-xylose), ethanol yields from D-xylose increased, the % D-xylose utilized increased, and the xylitol yield was significantly reduced in the presence of D-glucose, compared to anoxic fermentations (YETOH,xylose = 0.2–0.40 g g−1, 75–100%, and Yxylitol = 0–0.2 g g−1 compared to YETOH,xylose = 0.15 g g−1, 56%, Yxylitol = 0.51 g g−1, respectively). To increase ethanol levels and reduce process time, fed-batch fermentations were performed in a single stage reactor employing two phases: (1) rapid aerobic growth on D-xylose (μ = 0.32 h−1) to high cell densities; (2) D-glucose addition and anaerobic conditions to produce ethanol (YETOH,xylose = 0.23 g g−1). The process generated high cell densities, 2 × 109 cells ml−1, and produced 45–50 g L−1 ethanol within 50 h from a mixture of D-glucose and D-xylose (compared to 30 g L−1 in 80 h in the best batch process). The two-phase process minimized loss of cell viability, increased D-xylose utilization, reduced process time, and increased final ethanol levels compared to the batch process. Received 23 February 1998/ Accepted in revised form 15 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号