首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
The glue genes of Drosophila melanogaster comprise a family of genes expressed at high levels in the salivary glands of late third instar larvae in response to the insect hormone ecdysone. We present evidence that, in contrast to the other glue genes, Sgs-4 is turned on throughout Drosophila development and is not expressed exclusively in the larval salivary glands. Larvae transformed with an Sgs-4/Adh (alcohol dehydrogenase) hybrid gene exhibit Sgs-4-directed Adh expression in the larval proventriculus as well as in the salivary glands as early as the first instar. Sgs-4-specific RNA can be detected at very low levels during all stages of development. During late third instar, levels of Sgs-4 RNA in the salivary glands increase several-thousand-fold, thereby accounting for the large amounts of Sgs-4 protein present in the glue produced by the salivary glands. This pattern of expression is unique to the Sgs-4 gene. While expression of several of the other glue genes can be detected in embryos and early larvae, they appear to be expressed neither throughout development nor in the larval proventriculus. Appearance of the glue gene RNAs in mid third instar salivary glands is noncoordinate, even for the chromosomally clustered genes Sgs-3, Sgs-7, and Sgs-8.  相似文献   

11.
12.
13.
The function of the broad-complex during Drosophila melanogaster oogenesis.   总被引:1,自引:0,他引:1  
G Tzolovsky  W M Deng  T Schlitt  M Bownes 《Genetics》1999,153(3):1371-1383
  相似文献   

14.
15.
Steroid regulation of autophagic programmed cell death during development   总被引:18,自引:0,他引:18  
Apoptosis and autophagy are morphologically distinct forms of programmed cell death. While autophagy occurs during the development of diverse organisms and has been implicated in tumorigenesis, little is known about the molecular mechanisms that regulate this type of cell death. Here we show that steroid-activated programmed cell death of Drosophila salivary glands occurs by autophagy. Expression of p35 prevents DNA fragmentation and partially inhibits changes in the cytosol and plasma membranes of dying salivary glands, suggesting that caspases are involved in autophagy. The steroid-regulated BR-C, E74A and E93 genes are required for salivary gland cell death. BR-C and E74A mutant salivary glands exhibit vacuole and plasma membrane breakdown, but E93 mutant salivary glands fail to exhibit these changes, indicating that E93 regulates early autophagic events. Expression of E93 in embryos is sufficient to induce cell death with many characteristics of apoptosis, but requires the H99 genetic interval that contains the rpr, hid and grim proapoptotic genes to induce nuclear changes diagnostic of apoptosis. In contrast, E93 expression is sufficient to induce the removal of cells by phagocytes in the absence of the H99 genes. These studies indicate that apoptosis and autophagy utilize some common regulatory mechanisms.  相似文献   

16.
17.
The Ashburner model for the hormonal control of polytene chromosome puffing has provided a strong foundation for understanding the basic mechanisms of steroid-regulated gene expression (Cold Spring Harbor Symp. Quant. Biol. 38 (1974) 655). According to this model, the steroid hormone 20-hydroxyecdysone (referred here as ecdysone) directly induces the expression of a small set of early regulatory genes. These genes, in turn, induce a much larger set of late target genes that play a more direct role in controlling the biological responses to the hormone. The recent characterization of two early puff genes, E63-1 and E23, and three late puff genes, D-spinophilin, L63, and L82, provide further confirmation of the Ashburner model. In addition, these studies provide exciting new directions for our understanding of ecdysone signaling. Overexpression studies of E63-1 implicate this gene in directing calcium-dependent salivary gland glue secretion. In contrast, overexpression of E23 indicates that this ABC transporter family member may negatively regulate ecdysone signaling by actively transporting the hormone out of target cells. Finally, genetic studies of the L63 and L82 late genes reveal unexpected possible functions for ecdysone in controlling developmental timing and growth. This review surveys the recent characterization of these ecdysone-inducible genes and provides an overview of how they expand our understanding of ecdysone functions during development.  相似文献   

18.
19.
20.
The Drosophila melanogaster 68C chromosomal locus is the site of a prominent polytene chromosome puff that harbors the genes Sgs-3, Sgs-7 and Sgs-8. These genes code for proteins that are part of the salivary glue that Drosophila larvae secrete as a means of fixing themselves to an external substrate for the duration of the pre-pupal and pupal period. The 68C glue genes are regulated by the steroid hormone ecdysterone, with the hormone required for both initiation and cessation of gene expression during the third larval instar. Previous work has defined sequences sufficient for expression of abundant levels of Sgs-3 mRNA at the correct time and in the correct tissue. We show here that sequences sufficient for normal tissue- and stage-specific accumulation of Sgs-3 RNA, but adequate only for low levels of expression, lie within 130 bp of the 5' end of the gene, or within the gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号