首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photocurrent in photosensitive bilayer lipid membranes has been studied as a function of the aqueous acceptor. Correlations are observed between the relative photocurrent and the position of the complex ion visible absorption band and the dipole moment of the ligand. The effect of the ligands is nondirectional: they may be added to either side of the membrane with a corresponding effect on the photocurrent. The effects of the ligands are interpreted using an energy barrier model.  相似文献   

2.
通过将微藻细胞固定在平面多孔碳纸上,制备微藻光电极,并在三电极体系电解液中加入电子介体进行测试,可产生与光照同步的光电流响应。考察了不同固定化方法、不同微藻及不同电子介体的光电流响应,结果表明硅溶胶-凝胶法制备的光电极光电流响应最佳,且对于亚心形四爿藻、金藻、莱茵衣藻、蛋白核小球藻、聚球藻等 5 种微藻都适用,表明该制备方法对不同微藻具有较好的通用性。电子介体的研究表明苯醌及其衍生物由于氧还电位较高,具有较好的阳极光电流响应特性,而甲基紫精氧还电位较低,具有较好的阴极光电流响应。  相似文献   

3.
When illuminated, oriented purple membranes isolated from Halobacterium halobium give a photoelectric effect. The frequency response of a photocurrent measuring system for purple membranes oriented and immobilized in a polyacrylamide gel is analyzed from DC to 100 MHz. The waveform of the photocurrent can depend on both the sample conditions (including bathing solution) and the measuring system (electrode and ammeter) at both the low and high frequency ends. In the DC-1 kHz range (millisecond signals), the apparent lifetime of the photocurrent component is distorted if the electrode is not platinized and if the conductivity of the bathing solution is not low. In the 1 kHz to 1 MHz range (microsecond signals), the frequency response is flat under most conditions. In the MHz range (nanosecond signals), the apparent lifetime of the photocurrent component will be distorted if the conductivity of the bathing solution is not high and if the input impedance of the ammeter is not low and constant throughout the frequency range. With our optimized apparatus, we could measure the photocurrent components from oriented purple membrane with lifetimes from 70 ms to 32 ns without distortion by the measuring system.  相似文献   

4.
The effect of the organic compound l-cis-diltiazem on the light-sensitive current of isolated rods of the tiger salamander was analysed by rapidly changing the extracellular medium using the method of Hodgkin et al. (1985). Addition to the extracellular medium of small amounts of l-cis-diltiazem rapidly inhibits the photocurrent. Complete suppression of the current was observed with 1 mM l-cis-diltiazem. Half blockage of the photocurrent occurred with about 150 M l-cis-diltiazem. The blocking effect of l-cis-diltiazem was enhanced by light and by a reduction of extracellular Na. A concentration of l-cis-diltiazem of 140 M, which suppresses one third of the photocurrent, was able to completely suppress the photocurrent carried by Ba. It is suggested that l-cis-diltiazem blocks the light-sensitive channel, possibly competing with cyclic guanosine-3-5-monophosphate (cGMP) for an internal regulatory site.  相似文献   

5.
Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.  相似文献   

6.
Although the concept of affinity purification using synthetic ligands had been utilized for many years, there are few articles related to this research area, and they focus only on the affinity purification of specific protein by a defined library of synthetic ligands. This study presents the design and construction of a 700-member library of synthetic ligands in detail. We selected 297 ligand columns from a 700-member library of synthetic ligands to screen leech protein extract. Of the 297, 154 columns had an enrichment effect, 83 columns had a depletion effect, 36 columns had a one-step purification effect, and 58 columns had a one-step purification via flowthrough effect. The experimental results achieved by this large library of affinity ligands provide solid convincing data for the theory that affinity chromatography could be used for the enrichment of proteins that are present in low abundance, the depletion of high abundance proteins, and one-step purification of special proteins.  相似文献   

7.
The photopotential and photocurrent generation for chlorophyll a, beta-carotene and a mixture of these pigments dissolved in nematic liquid crystal and located between transparent semiconducting electrodes were measured. Both pigments exhibit photopotential and photocurrent generation. From the photocurrent amplitudes it follows that the efficiency of electron transfer to a semiconducting electrode from beta-carotene is higher than from chlorophyll alpha. The photocurrent amplitude of the pigment mixture is slightly lower than that calculated as a sum of amplitudes of pigments located in separated cells. This difference can be explained by secondary effects, such as competition between carotene and chlorophyll molecules in a process of adsorption on a semiconducting electrode. Therefore it seems that no charge transfer complexes of chlorophyll and carotene are formed in the investigated model system.  相似文献   

8.
The tight-seal whole-cell recording technique was used to examine the effect of tetraethylammonium (TEA) and 4-aminopyridine (4-AP) on the photocurrent of hyperpolarizing ciliary photoreceptors isolated from the distal retina of the bay scallop (Pecten irradians). In these cells, light causes an increase in a conductance that is highly selective to potassium ions. Extracellular application of TEA at a concentration of 50 mM produced a modest, reversible block (approximately 35% at -20 mV holding potential). The blockage was weakly voltage dependent, increasing by approximately 20% for a 20-mV hyperpolarization, suggestive of a site of interaction superficially located within the electric field of the membrane. Treatment with TEA produced no significant changes either in the light sensitivity of the photocurrent or in its kinetics. The effects of superfusion with 4-AP were more dramatic: the light-evoked current was nearly abolished (> 95%) at submillimolar concentrations, with a half-maximal dose of approximately 0.6 microns. The blockage had a rapid onset and was slowly reversible. No significant use or voltage dependency were observed. A number of control experiments indicated that the phototransduction cascade remained functional during treatment with 4- AP: the early receptor current, the prolonged after current and its suppression, the photoresponse kinetics and the light sensitivity of the cell were little affected by 4-AP, suggesting that the suppression of the photocurrent is due to blockage of the light-sensitive channels, rather than impairment of some of the activation steps. The results are discussed in the light of a possible kinship between the light- activated potassium channels of invertebrate hyperpolarizing photoreceptors and the family of rapidly-inactivating voltage-dependent potassium channels, which typically exhibit high susceptibility to blockage by this drug.  相似文献   

9.
The electrolyte-pigment-metal system can be described as analogous to a photosensitive junction region. When the thickness of the pigment film is increased, the action spectra of the maximum short-circuit photocurrent under continuous illumination differ from the absorption spectra both in direct illumination (pigment-electrolyte) and in back illumination (metal-pigment). One is led to believe that there exist two photoactive regions in the system for the production of the short-circuit photocurrent; these two active regions are associated respectively with each interface. When the metallic semitransparent electrode is made of aluminum the two interfaces have opposite sign contributions to the photocurrent; this allows the determination of conditions in which one can observe specifically the contribution of the pigment-electrolyte interface, that is the interactions between excited pigment molecules and the redox system in the electrolyte.  相似文献   

10.
The results of a comprehensive structure-affinity relationship study on the effect of the quaternization (i.e., N-methylation) of structurally different ligands in the classes of tropane and quinuclidine derivatives are described. This study shows that the effects of the quaternization of the basic nitrogen of these 5-HT(3) receptor ligands appear to be strictly structure-dependent suggesting that different binding modes are operative at 5-HT(3) receptor binding site. The different effect of the quaternization of the basic nitrogen of structurally different ligands were rationalized in terms of the interaction with the receptor by means of the combined use of experimental techniques (X-ray diffraction and NMR studies) and computational simulation studies.  相似文献   

11.
Kinetics of the Photocurrent of Retinal Rods   总被引:19,自引:1,他引:18  
The shapes of the photocurrent responses of rat rods, recorded with microelectrodes from the receptor layer of small pieces of isolated retinas, have been investigated as a function of temperature and of stimulus energy. Between 27 and 37°C the responses to short flashes can be described formally as the output of a chain of at least four linear low-pass filters with time constants in the range 50-100 msec. The output of the filter chain is then distorted by a nonlinear amplitude-limiting process with a hyperbolic saturation characteristic. Flashes producing ~30 photons absorbed per rod yield responses of half-maximal size independently of temperature. The maximum response amplitude is that just sufficient to cancel the dark current. The rate of rise of a response is proportional to flash energy up to the level of 105 photons absorbed per rod, where hyperbolic rate saturation ensues. The responses continue to increase in duration with even more intense flashes until, at the level of 107 photons absorbed per rod, they last longer than 50 min. The time-courses of the photocurrent and of the excitatory disturbance in the rod system are very similar. The stimulus intensity at which amplitude saturation of the photocurrent responses begins is near that where psychophysical “rod saturation” is seen. An analysis of these properties leads to the following conclusions about the mechanism of rod excitation. (a) The kinetics of the photocurrent bear no simple relation to the formation or decay of any of the spectroscopic intermediates so far detected during the photolysis of rhodopsin. (b) The forms of both the amplitude- and rate-limiting processes are not compatible with organization of rhodopsin into “photoreceptive units” containing more than 300 chromophores. Even at high stimulus intensities most rhodopsin chromophores remain connected to the excitatory apparatus of rods. (c) The maximum rate of rise of the photocurrent is too fast to be consistent with the infolded disks of a rod outer segment being attached to the overlying plasma membrane. Most of the disks behave electrically as if isolated within the cell. (d) Control of the photocurrent at the outer segment membrane is not achieved by segregation of the charge carriers of the current within the rod disks. Instead, it is likely to depend on control of the plasma membrane permeability by an agent released from the disks.  相似文献   

12.

In this paper, cylindrical shape coupled bimetallic plasmonic nanoparticles (NPs) were used to improve the performance of a thin-film silicon solar cell. Our design is based on the appropriate selection of the composition and morphology of the NPs to reach a cell with excellent optical properties. The specific interaction between the incident light and bimetallic NPs helps us to design better solar absorbers. Here, the FDTD method was used to evaluate the effect of cylindrical Al-Ag bimetallic NPs on the surface of a thin silicon absorber. At first, a unit cell with Al-Al paired nano-cylinders at the surface was evaluated and a photocurrent of 14.65 mA/cm2 was obtained. In the case of a cell with paired Al-Ag bimetallic nano-cylinders, the photocurrent was increased to 16.15 mA/cm2. This value was increased to 16.57 mA/cm2 when paired polymetallic NPs were used. According to the results of this work, bimetallic and polymetallic nanoparticles can significantly improve the photocurrent of an ultra-thin silicon solar cell. The results of this work can be used to design better plasmonic-based light trapping systems for thin-film solar cells.

  相似文献   

13.
The contribution of proton release from the so-called proton release group to the microsecond B2 photocurrent from bacteriorhodopsin (bR) oriented in polyacrylamide gels was determined. The fraction of the B2 current due to proton release was resolved by titration of the proton release group in M. At pH values below the pKa of the proton release group in M, the proton release group cannot release its proton during the first half of the bacteriorhodopsin photocycle. At these pH values, the B2 photocurrent is due primarily to translocation of the Schiff base proton to Asp85. The B2 photocurrent was measured in wild-type bR gels at pH 4.5-7.5, in 100 mM KCl/50 mM phosphate. The B2 photocurrent area (proportional to the amount of charge moved) exhibits a pH dependence with a pKa of 6.1. This is suggested to be the pKa of the proton release group in M; the value obtained is in good agreement with previous results obtained by examining photocycle kinetics and pH-sensitive dye signals. In the mutant Glu204Gln, the B2 photocurrent of the mutant membranes was pH independent between pH 4 and 7. Because the proton release group is incapacitated, and early proton release is eliminated in the Glu204Gln mutant, this supports the idea that the pH dependence of the B2 photocurrent in the wild type reflects the titration of the proton release group. In wild-type bacteriorhodopsin, proton release contributes approximately half of the B2 area at pH 7.5. The B2 area in the Glu204Gln mutant is similar to that in the wild type at pH 4.5; in both cases, the B2 current is likely due only to movement of the Schiff base proton to Asp85.  相似文献   

14.
The light-dependent K conductance of hyperpolarizing Pecten photoreceptors exhibits a pronounced outward rectification that is eliminated by removal of extracellular divalent cations. The voltage-dependent block by Ca(2+) and Mg(2+) that underlies such nonlinearity was investigated. Both divalents reduce the photocurrent amplitude, the potency being significantly higher for Ca(2+) than Mg(2+) (K(1/2) approximately 16 and 61 mM, respectively, at V(m) = -30 mV). Neither cation is measurably permeant. Manipulating the concentration of permeant K ions affects the blockade, suggesting that the mechanism entails occlusion of the permeation pathway. The voltage dependency of Ca(2+) block is consistent with a single binding site located at an electrical distance of delta approximately 0.6 from the outside. Resolution of light-dependent single-channel currents under physiological conditions indicates that blockade must be slow, which prompted the use of perturbation/relaxation methods to analyze its kinetics. Voltage steps during illumination produce a distinct relaxation in the photocurrent (tau = 5-20 ms) that disappears on removal of Ca(2+) and Mg(2+) and thus reflects enhancement or relief of blockade, depending on the polarity of the stimulus. The equilibration kinetics are significantly faster with Ca(2+) than with Mg(2+), suggesting that the process is dominated by the "on" rate, perhaps because of a step requiring dehydration of the blocking ion to access the binding site. Complementary strategies were adopted to investigate the interaction between blockade and channel gating: the photocurrent decay accelerates with hyperpolarization, but the effect requires extracellular divalents. Moreover, conditioning voltage steps terminated immediately before light stimulation failed to affect the photocurrent. These observations suggest that equilibration of block at different voltages requires an open pore. Inducing channels to close during a conditioning hyperpolarization resulted in a slight delay in the rising phase of a subsequent light response; this effect can be interpreted as closure of the channel with a divalent ion trapped inside.  相似文献   

15.
Substitutions on the benzene ring of nitrosobenzene did not have the same effect on oxidative haemolysis as substitutions on phenylhydrazine. We previously found that the haemolytic effect of arylhydrazines paralleled their oxidative conversion into ligands of ferrihaemoglobin. In contrast, although most substituted nitrosobenzenes that are ligands of ferrohaemoglobin caused haemolysis and most that are not ligands failed to cause nitrosoarenes appeared to be related more closely to the ease of their reduction to arylhydroxylamines than to their properties as ligands. We propose a mechanism of oxidative degradation whereby the cyclic formation of phenylhydroxylamine from nitrosobenzene within an erythrocyte leads to the accumulation of H2O2, which then reacts with ferrohaemoglobin to initiate the oxidative cleavage of haem. The posulated active intermediate in this reaction is the same as that previously proposed in the oxidative degradation of haemoglobin by phenylhydrzine and in the coupled oxidation of ascorbic acid and haemoglobin.  相似文献   

16.
Influence of long-range interactions between ligands bound to DNA molecule on the character of their adsorption is studied using computer modeling. For this investigation, two calculation procedures are developed. They are based upon the method of the free energy minimum and on the partition function method. The both procedures demonstrate that in the case of a strong enough attraction between all the bound ligands their binding to DNA has the character of phase transition of the first kind. There is a break in the binding curve c(c0) where c - relative concentration of bound ligands, c0 - molar concentration of free ligands. The break occurs because there is an interval of central degrees of binding (approximately 50% of the maximum c value) that are prohibited for individual DNA molecules. Such a transition might be caused by some types of DNA condensation. Attraction between the neighboring ligands only, adjacent or/and separated by double helix regions, does not cause this effect.  相似文献   

17.
18.
A patch-clamp method was used for measuring light-induced currents (photocurrents) in single dark-adapted Peperomia metallica chloroplasts in a 'whole-thylakoid' configuration. The multi-phasic photocurrent profiles upon a train of multiple flashes (time separation between flashes in the train 1 s) show the following characteristics: (i) photocurrent generation originates from trans-thylakoid charge transfer accompanying reaction center (RC)- and Q-cycle turnover; (ii) a 15–30% decrease in the amplitude of the RC-driven current in the second and following flashes, concomitantly with an increase in the dark recovery time of the current; and (iii) a binary oscillation of the Q-cycle current generator with high activity in even numbered flashes. The decrease in amplitude and decay rate constant of the photocurrent in a double flash after dark adaptation are interpreted in terms of a change in the electric conductance of the thylakoid lumen. Data are interpreted to indicate a light control of the thylakoid lumen via a narrowing of the planar sheet-like structures by 1 to 3 single turnover flashes. A simple method is given to determine the bioenergetic and electric parameters of the thylakoid membrane of a single chloroplast from the current profiles in a double flash. The data indicate that 1 s after a saturating flash the fraction of closed inactive centers is less than 3%.  相似文献   

19.
The influence of the solvent on the binding energies to DNA of six non-intercalating antibiotics - netropsin, distamycin-3, distamycin-2, SN 18071, berenil and stilbamidine - is evaluated by combining the effect of the first hydration shell with that of bulk water. The first effect is computed by a methodology based on a spherical/point dipole model of water and limited to electrostatic interaction energies. Hydration shells are obtained which are energy optimized with respect to both water-solute and water-water interactions for the complexes and for the isolated DNA oligomers and ligands. The method allows even very large complexes to be studied in reasonable computation times. The second effect is introduced via a cavity treatment. It is shown that if the vacuum interaction energies already predict correctly the preference of the ligands for the minor groove of AT sequences of B-DNA, the introduction of the solvation effect is indispensable for reproducing the order of affinity of the ligands and for bringing the values of the complexation energies into close agreement with experimental data.  相似文献   

20.
We investigated the effects of high concentrations of cytoplasmic cyclic GMP on the photocurrent kinetics and light sensitivity of the tiger salamander rod both in intact cells and in detached outer segments. Photoreceptors were internally perfused with cGMP by applying patch pipettes containing cGMP to the inner or outer segment. Large increases in the concentration of cGMP in the outer segment cytoplasm were achieved only when the patch pipette was applied directly to the outer segment. The dark-current amplitude increased with increasing cGMP concentrations up to approximately 1,400 pA. Internal perfusion with 5.0 mM cGMP introduced a delay of 1-3 s in the photocurrent. The magnitude of the delay was inversely proportional to the light intensity. In addition, the photocurrent time course was slowed down and the light sensitivity, measured 1 s after the flash, was decreased approximately 100-fold when compared with that of the intact cell. The observed effects of cGMP were compared with those predicted by a model that assumes that the initial photocurrent time course is determined by the kinetics of the light-activated phosphodiesterase (PDE) and the cGMP dependence of the light-sensitive channels. At high concentrations of cGMP, the experimental data were similar to those predicted by the model and based on the known biochemical properties of the light-activated PDE and cGMP-activated channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号